期刊文献+

基于正则化与保真项全变分自适应图像去噪模型 被引量:11

An adaptive total variational denoising model based on L^P norm and fidelity term
下载PDF
导出
摘要 分析了自适应范数的变分去噪模型与自适应可信度参数变分去噪模型优缺点,提出了一种同时基于范数p与可信度参数λ全变分自适应图像去噪模型。在该模型中,扩散行为的参数p(x,y)由图像局部梯度决定,可信度参数λ(x,y)大小取决于当前处理位置对应残差图像的特性。实验结果表明,本模型在去除噪声的同时更好地保留图像的细节信息,且峰值信噪比有所提高,取得很好的降噪性能。 Through discussion of the characteristics of the adaptive norm total variation and the adaptive fidelity term total variation, a novel texture preserving adaptive total variational denoising model based on norm p and fidelity term A is pro- posed in this paper. This new total variational model uses the gradient information of each pixel to control the diffusion coef- ficient p (x,y) and adjusts the fidelity A (x, y) according to residual image's character of each pixel. Numerical experiments results show that the proposed model can remove the noise while preserving more image details and gain higher peak signal- noise ratio, and has good performance in image denoising.
出处 《重庆邮电大学学报(自然科学版)》 北大核心 2011年第5期621-625,共5页 Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
基金 四川省教育厅(10ZA13508ZC029)~~
关键词 图像去噪 全变分模型 自适应去噪 可信度参数 image denoising total variational model adaptive denoising fidelity term
  • 相关文献

参考文献11

  • 1PERONA P, MALI J. Scale-space and edge detection using anisotropic diffusion[ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12 (7) : 629- 639. 被引量:1
  • 2CATTE F, LIONS P L, MOREL J M, et al. Image selective smoothing and edge detection by nonlinear diffusion [J]. SIAM J,1992,29 (1):182-193. 被引量:1
  • 3RUDIN L, OSHER S, FATEMI E. Nonlinear total variation based noise removal algorithms [ J ]. Physica D, 1992,60(14) :259-268. 被引量:1
  • 4CHANT F, ESEDOGLU S. Aspects of total variation regularized L1 function approximation [ J ]. SIAM Journal on Applied Mathematics ,2005,65 ( 5 ) : 1817-1837. 被引量:1
  • 5BING S. Topics in variational PDE image segmentation, inpainting and denoising[D]. USA:University of California Los Angeles ,2003. 被引量:1
  • 6BLOMGREN P V. Col or TV: Total variation method for restoration of vector2 valued Images [ D ]. Angeles : UCLA, 1998. 被引量:1
  • 7张红英,彭启琮.全变分自适应图像去噪模型[J].光电工程,2006,33(3):50-53. 被引量:45
  • 8侯榆青,张欢,史晶,张玲艳.一种改进的全变分自适应图像去噪模型[J].西北大学学报(自然科学版),2008,38(3):371-373. 被引量:10
  • 9GILBOA G, YEHOSHUA Y, ZEEVI, et al. Texture preserving variational denoising using an adaptive fidelity term[ C]//In Conjunction with the 9th IEEE International Conference in Computer Vision, 2003. France : IEEE Press, 2003: 137-144. 被引量:1
  • 10余丽红,冯衍秋,陈武凡.基于自适应正则化的全变分去噪算法[J].中国图象图形学报,2009,14(10):1950-1954. 被引量:11

二级参考文献23

  • 1付树军,阮秋琦,王文洽.偏微分方程(PDEs)模型在图像处理中的若干应用[J].计算机工程与应用,2005,41(2):33-35. 被引量:14
  • 2赵健,周明全,谢端,卜起荣.SAR图像小波域消噪方法[J].西北大学学报(自然科学版),2005,35(1):17-20. 被引量:3
  • 3张红英,彭启琮.全变分自适应图像去噪模型[J].光电工程,2006,33(3):50-53. 被引量:45
  • 4Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion [ J ]. IEEE Transactions on PAMI, 1990, 12 (7) :629-639. 被引量:1
  • 5Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms[ J ]. Physica D, 1992, 60(1-4) : 259-268. 被引量:1
  • 6Chan T F, Esedoglu S. Aspects of total variation regularized L1 function approximation [ J ] SIAM Journal on Applied Mathematics. 2005, 65 ( 5 ) : 1817-1837. 被引量:1
  • 7Strong D, Chan T. Edge-preserving and scale-dependent Properties of total variation regularization [ J ]. Inverse Problems, 2003,19 (6) : 165-187. 被引量:1
  • 8Ring W. Structural properties of solutions of total variation regularization problems [J]. M2AN Mathematical Modeling and Numerical Analyses, 2000,34(4) :799-810. 被引量:1
  • 9Osher S, Burger M, Goldfarb D, et al. An iterative regularization method for total variation-based image restoration [ J ] . Muhiseale Modeling and Simulation, 2005,4(2) :460-489. 被引量:1
  • 10Della P S, Delia P V, Lafferty J. Duality and auxiliary functions for Bregman distances [ R] . CMU-CS-01- 109, Pittsburgh, PA, USA: School of Computer Science, Carnegie Mellon University,2001. 被引量:1

共引文献61

同被引文献107

引证文献11

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部