期刊文献+

基于二值信任网络的推荐算法改进 被引量:4

IMPROVING RECOMMENDATION ALGORITHM BASED ON BINARY TRUST-AWARE NETWORK
下载PDF
导出
摘要 协同过滤算法根据用户项目评分数据进行推荐,但评分数据通常很稀疏,使得用户无法获得满意的推荐,尤其是新用户。而信任网络以及社交网络能提供用户之间的关系数据,可用于推荐算法中。基于二值信任网络,提出GenTrust算法预测新的信任关系,扩展信任网络;并提出IndegreeTrust算法,区分被同一用户信任的所有用户。采用Epinions.com数据集,实验结果表明改进算法相比基于原始信任网络的算法准确率有所提升。 Collaborative filtering technique predicts items for users according to user-item marking data. However, the marking data is usually too sparse to make users, especially the new users, get satisfied recommendations. The trust-aware network or social network could be used to provide relationship data between the users, and is able to be used for recommendation algorithm. This paper, based on binary trustaware network, proposes GenTrust algorithm to predict new trust relationship in order to extend the trust-aware network, and IndegreeTrust algorithm to differentiate the users trusted by the same user. An evaluation on Epinions. com dataset shows that the improved algorithm has enhancement in its accuracy compared with the algorithm based on primitive trust-aware network.
出处 《计算机应用与软件》 CSCD 北大核心 2012年第12期157-160,共4页 Computer Applications and Software
关键词 推荐系统 协同过滤 二值信任网络 Recommender system Collaborative filtering Binary trust-aware network
  • 相关文献

参考文献13

  • 1Balabanovic M,Shoham Y.Fab:Content-Based,Collaborative Recom-mendation[J].Comm.ACM,1997,40(3):66-72. 被引量:1
  • 2Goldberg K,Roeder T,Gupta D,et al.Eigentaste:a constant time col-laborative filtering algorithm[J].Information Retrival,2001,4(2):133-151. 被引量:1
  • 3Sinha R,Swearingen K.Comparing recommendations made by onlinesystems and friends[C]//Proceedings of the DELOS-NSF WorkshopOil Personalization and Recommender Systems in Digital Libraries,Puerto Vallarta,Mexico,2001. 被引量:1
  • 4Herlocker J L,Konstan J A,Borchers A,et al.An algorithmic frame-work for performing collaborative filtering[C]//Proceedings of theConference on Research andDevelopment in Information Retrieval(SI-GIR’99),1999:230-237. 被引量:1
  • 5Donovan J O,Smyth B.Trust in recommender systems[C]//IUI’05:Proceedings of the 10th international conference on Intelligent user in-terfaces,New York,NY,USA,2005.ACM Press:167-174. 被引量:1
  • 6Massa P,Avesani P.Trust-aware collaborative filtering for recommendersystems[C]//Proc.Of Federated Int.Conference On The Move toMeaningful Internet:CoopIS,DOA,ODBASE,2004. 被引量:1
  • 7陈晓城..基于信任传播模型的协同过滤推荐算法研究[D].中山大学,2010:
  • 8Golbeck J.Computing and Applying Trust in Web-based Social Net-works[D].University of Maryland,2005. 被引量:1
  • 9Massa P,Avesani P.Trust-aware recommender systems[C]//Proc.ofRecSys’07,Minneapolis,MN,USA,2007:17-24. 被引量:1
  • 10Wu Zhili,Yu Xueli,Sun Jingyu.An Improved Trust Metric for Trust-a-ware Recommender Systems[C]//International Symposium on Educa-tion and Computer Science(ECS 2009).Wuhan:Huazhong Universityof Technology,2009. 被引量:1

同被引文献23

  • 1朱艳春,刘鲁,张巍.在线信誉系统中的信任模型构建研究[J].控制与决策,2007,22(4):413-417. 被引量:24
  • 2Zhou T,Ren J,Medo M,et al.Bipartite network projection and personal recommendation[J].Physical Review E,2007,76(4). 被引量:1
  • 3Herlocker J L,Konstan J A,Terveen L G,et al.Evaluating collaborative filtering recommender systems[J].ACM Transactions on Information Systems(TOIS),2004,22(1). 被引量:1
  • 4Massa P,Avesani P.Trust metrics in recommender systems[M]//Computing with Social Trust.London:Springer,2009:259-285. 被引量:1
  • 5Victor P,Cornelis C,Teredesai A M,et al.Whom should I trust?:the impact of key figures on cold start recommendations[C]//Proceedings of the 2008 ACM Symposium on Applied Computing,2008:2014-2018. 被引量:1
  • 6Chakraborty P S,Karform S.Designing trust propagation algorithms based on simple multiplicative strategy for social networks[J].Procedia Technology,2012:534-539. 被引量:1
  • 7Li Y M,Wu C T,Lai C Y.A social recommender mechanism for e-commerce:combining similarity,trust,and relationship[J].Decision Support Systems,2013,55(3):740-752. 被引量:1
  • 8Zhang Yongfeng,Zhang Min,Liu Yiqun,et al.Localized matrix factorization for recommendation based on matrix block diagonal forms[C]//Proc of the 22nd International Conference on World Wide Web,2013:1511-1520. 被引量:1
  • 9Ma Hao,King I,Lyum R.Learning to recommend with social trust ensemble[C]//Proc of the 32nd International ACM SIGIR Conference Research and Development in Information Retrieval.New York:ACM Press,2009:203-210. 被引量:1
  • 10苏锦钿,郭荷清,高英.基于信任网的推荐机制[J].华南理工大学学报(自然科学版),2008,36(4):98-103. 被引量:7

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部