摘要
主要研究了在弱L-平均条件下非精确牛顿型迭代法在求解非线性算子方程时的半局部收敛性.这种弱L-平均条件包含了常用的Lipschitz条件作为特殊情形,故所得收敛结果具有一般性.
The semilocal convergence properties of the variants of inexact Newton-type iteration methods for nonlinear operator equations were studied under the hypothesis that the first derivative satisfies weak L-average conditions. These conditions included the usual Lipschitz condition as special cases.
出处
《浙江师范大学学报(自然科学版)》
CAS
2012年第4期395-400,共6页
Journal of Zhejiang Normal University:Natural Sciences
关键词
非线性算子方程
非精确牛顿型迭代法
半局部收敛
弱L-平均条件
nonlinear operator equations
inexact Newton-type iteration method
semilocal convergence
weak L-average condition