期刊文献+

仿射反变条件下Newton迭代法的半局部收敛性

The semi-local convergence of Newton method under affine contravariance condition
下载PDF
导出
摘要 研究了一阶导数满足仿射反变ω-条件下,Newton迭代法在求解非线性算子方程时的半局部收敛性.这种ω-条件包含了仿射反变Lipschitz条件和仿射反变Hlder条件作为特殊情形.此外,得到了相应迭代残余(‖F(xk)‖)的误差估计,并推广了相应结果. The semi-local convergence properties of Newton′s iteration method for nonlinear operator equations were studied under the hypothesis that the first derivative satisfies affine contravariant ω-condition.This condition includes the affine contravariant Lipschitz condition and the affine contravariant Hlder condition as special cases.Moreover,the estimations of the iterative residual(‖F(xk)‖) were given and the results obtained before were extended.
出处 《浙江师范大学学报(自然科学版)》 CAS 2011年第1期51-54,共4页 Journal of Zhejiang Normal University:Natural Sciences
关键词 非线性算子方程 NEWTON法 半局部收敛性 ω-条件 nonlinear operator equation Newton method semi-local convergence ω-condition
  • 相关文献

参考文献8

  • 1Kantorvich L V,Akilov G P.Functional Analysis[M].Oxford:Pergamon Press,1982. 被引量:1
  • 2Ortega J M,Rheinboldt W C.Iterative Solution of Nonlinear Equations in Several Variables[M].New York:Academic Press,1970. 被引量:1
  • 3Rokne J.Newton′s Method under Mild Differentiability Conditions with Error Analysis[J].Numer Math,1972,18(5):401-412. 被引量:1
  • 4Ezquerro J A,Hern(a)ndez M A.Generalized differentiability conditions for Newton′s method[J].IMA Journal of Numerical Analysis,2002,22(2):187-205. 被引量:1
  • 5Mysovskikh I.On Convergence of Newton′s Method (Russian)[J].Trudy Mat Inst Steklov,1949,28(1):145-147. 被引量:1
  • 6Deuflhard P,Heindl G.Affine Invariant Convergence Theorems for Newton′s Method and Extensions to Related Methods[J].SIAM J Numer Anal,1979,16(1):1-10. 被引量:1
  • 7Deuflhard P.Newton Methods for Nonlinear Problems:Affine Invariance and Adaptive Algorithms[M].Berlin:Springer-Verlag,2004. 被引量:1
  • 8Hohmann A.Inexact Gauss Newton Methods for Parameter Dependent Nolinear Problems[D].Berlin:Freie Universit(a)t,1994. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部