期刊文献+

应用DCNLP法求解五连杆机器手臂对接问题 被引量:5

Five-linked Manipulator Arm Rendezvous Optimization Using DCNLP
下载PDF
导出
摘要 为了使机器人在完成对接(Rendezvous)任务的同时让能耗达到最优,提出一种通过直接配置非线性规划法(DCNLP)来实现五连杆机器手臂能耗最优化的控制方法.使用Euler-Lagrange公式描述机器手臂的动力学方程,并借助符号运算推导相应公式;利用最优化控制的必要条件(Necessary Conditions)来规范最优指标,因是最优控制,求解过程必定遭遇"两端点边界值问题(Two-point Boundary-valued Problem)",本文引入DCNLP法将最优控制问题离散化为非线性规划问题;最后利用非线性规划法求得问题的最优解;仿真结果表明DCNLP对初值估计精度要求不高,鲁棒性好,寻优能力强. The application of direct collocation with nonlinear programming ( DCNLP ) method applied to a five-linked manipulator arm rendezvous with numerical analysis optimization problem is introduced. Firstly, this study takes advantage of Symbolic Language Programming and uses it to derive the Euler-Lagrange { E-L ) equation symbolically. Since it is an optimal control problem," two-point boundary-valued problem( TPBVP )" is inevitable. Thus DCNLP is indroduced to seek the numerical solutions of the problem. Then, the optimal control problern/TPBVP is transformed into nonlinear programming problem using DCNLP method. The simulation result demonstrates that DCNLP method is neither acute nor discriminating to the initial guess of state variables; it also shows that DCNLP is robust in obtaining solutions for a large-scaled problem. At last, DCNLP requires large memory space and fast CPU. However these two concerns have not been an issue for now-a-days microcomputer. The major theme of this paper is to use DCNLP to facilitate the use of intelligent robotic manipulator and apply it to enhance the quality of medical care and senior citizen nursing. However, to take up a task such as this kind, the robot has to come up with some algorithm which intelligently gets the maneuvering done with ele- gance. Optimal control and optimization guarantee that the result found is the best by compairing to other methods. It may encounters difficulties in solving the system but the result is unbeatable.
出处 《小型微型计算机系统》 CSCD 北大核心 2012年第12期2749-2752,共4页 Journal of Chinese Computer Systems
基金 浙江省教育厅科研项目(Y201224238)资助
关键词 机器手臂 路径规划 直接定位 最优化控制 非线性规划 robot manipulator path planning direct collocation optimal control nonlinear programming
  • 相关文献

参考文献4

二级参考文献39

  • 1王田苗.走向产业化的先进机器人技术[J].中国制造业信息化(学术版),2005,34(10):24-25. 被引量:13
  • 2孙敏,范守文.基于能耗指标的拟人机器人步态优化与分析[J].机械设计与研究,2007,23(2):52-54. 被引量:7
  • 3Widhalm J W, Heise S A. Optimal in-plane orbital evasive maneuvers using continuous low thrust propulsion [J]. Journal of Guidance, Control, and Dynamics (S0731-5090), 1991, 14(6): 1323-1326. 被引量:1
  • 4Enright P J, Conway B A. Optimal finite-thrust spacecraft trajectories using collocation and nonlinear programming [J]. Journal of Guidance, Control, and Dynamics (S0731-5090), 1991, 14(5): 981-985. 被引量:1
  • 5Hanson J M, Duckman G A. Optimization of many-bum orbital transfer [J]. The Journal of the Astronautical Sciences (S0021-9142), 1997, 45(1): 1-40. 被引量:1
  • 6Igarashi J, Spencer D B. Optimal continuous thrust orbit transfer using evolutionary algorithms [C]// AIAA/AAS Astrodynamics Specialist Conference & Exhibit, Providence, August 2004. USA: AIAA, 2004. 被引量:1
  • 7Yan H, Wu H Y. Initial adjoint-variable guess technique and its application in optimal orbital transfer [J]. Journal of Guidance, Control, and Dynamics (S0731-5090), 1999, 22(3): 490-492. 被引量:1
  • 8Albert L, Bruce A. Direct optimization using collocation based on high-order Gauss-Lobatto quadrature rules [J]. Journal of Guidance, Control, and Dynamics (S0731-5090), 1996, 19(3): 592-599. 被引量:1
  • 9David G. Conversion of optimal control problems into parameter optimization problems [J]. Journal of Guidance, Control, and Dynamics (S0731-5090), 1997, 20(1): 57-60. 被引量:1
  • 10Hargraves C R. Direct trajectory optimization using nonlinear programming and collocation [J]. Journal of Guidance, Control, and Dynamics (S0731-5090), 1987, 10(4): 338-342. 被引量:1

共引文献148

同被引文献47

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部