期刊文献+

区间数模糊c均值聚类中相对位置相异度的研究 被引量:2

Research on Relative Position Dissimilarity in Interval-data Fuzzy C-Means Clustering
下载PDF
导出
摘要 区间数模糊c均值聚类方法中,区间数距离公式存在无法描述区间数之间相对位置的问题,针对该问题,本文分析了该问题产生原因,提出了相对位置相异度公式,并将该相异度公式应用于区间数模糊c均值聚类中。理论分析说明相对位置相异度公式能定量描述区间数之间相异程度,还能描述区间数之间相对位置。仿真实验结果表明,相对于基于现有区间数距离公式的区间数模糊c均值聚类,基于相对位置相异度的区间数模糊c均值聚类方法具有更好的聚类效果。同时,给出了相对位置相异度公式中参数选择标准。 This paper discussed the problem that various distances in the interval-data fuzzy c-means clustering method(labeled IFCM) can't represent the relative position of interval data,and proposed the relative position dissimilarity.The relative position dissimilarity is constructed based on the fact that the differential value between distance of midpoint of interval data and sum of the half length of interval data could reflect the relative position of interval data.And the relative position dissimilarity satisfies the conditions: 1) it decreases as the decrease of the differential value;2) it decreases as the increase of the sum of interval data length.In theory,the relative position dissimilarity depicts the difference of the interval data in quantity and the relative position of interval data.Meanwhile,the relative position dissimilarity was applied in the IFCM clustering method,which called as IFCM-RPD clustering method.Experimental results show that the IFCM-RPD clustering method has better clustering effect.As well,selection criteria of the parameters in the relative position dissimilarity are given.
出处 《信号处理》 CSCD 北大核心 2012年第10期1370-1378,共9页 Journal of Signal Processing
基金 国家自然科学基金项目(61071038) 国家自然科学基金项目(61102034) 广东省教育部产学研结合重点项目(2011A090200128)
关键词 不确定数据 区间数 区间数距离 模糊C均值聚类 uncertain data interval data interval data distance fuzzy c-means clustering
  • 相关文献

参考文献20

  • 1Yehia M, Chedid R, Ilic M, Zobian A, Tabors R, Lacalle- Melero J. A Global Planning Methodology For Uncertain Environments: Application to the Lebanese Power System [ J]. IEEE Transactions on Power Systems, 1995,10 ( 1 ) : 332-338. 被引量:1
  • 2Bonissone PP, Dutta S and Wood NC. Merging Strategic and Tactical Planning in Dynamic and Uncertain Environ- ments[J]. IEEE TRANSACTION ON SYSTEMS,MAN, AND CYBERNETICS, 1994,24 (6) : 841 - 862. 被引量:1
  • 3Shahi A,Atan Rodziah binti and Sulaiman MN. Decision Making for Uncertain Data in Dynamic Environment using Hybrid Method[ C]. 2009 IEEE International Conference on Control and Automantion Christchurch, New Zealand, 2009.9-11. 被引量:1
  • 4Windhorst R, Field M, and Karahan S. Covective Weather avoidance with uncertain weather forecasts [ C ]. Digital Avionics Systems Conference, 2009. DASC'09. Orlando, 2009,3. D. 4-1-3. D. 4-10. 被引量:1
  • 5Hipel KW and Yakov Ben-Haim. Decision Making in an Uncertain World: Information-Gap Modeling in Water Re- sources Management [ J ]. IEEE TRANSACTION ON SYSTEMS, MAN, AND CYBERNETICS-PART C: AP-PLICATION AND REVIEWS, 1999,29(4) :506-517. 被引量:1
  • 6Batista DM and Fonseca Nelson L. S da. Scheduling Grid Task in Face of Uncertain Communication Demands [ J ]. IEEE TRANSACTION ON NETWORK AND SERVICE MANAGEMENT,2011 ,. 8 (2) : 92-103. 被引量:1
  • 7Wang S, Wang GR, Gao X, Tan Z. Frequent Items Compu- tation over Uncertain Wireless Sensor Network [ C ]. 2009 Ninth International Conference on Hybrid Intelligent Sys- tem. Shenyang,2009,223-228. 被引量:1
  • 8Charalambous CD, Farhadi A, Denic S and Rezaei F. Ro- bust Control over Uncertain Communication Channels [ C]. Proceedings of the 13th Mediterranean Conference on Control and Automation Limassol, Cyprus, 2005, 27 -29. 被引量:1
  • 9宋成,王飞雪,庄钊文.辅助型GPS接收机中载波频偏及其不确定度估计算法研究[J].信号处理,2009,25(11):1694-1700. 被引量:3
  • 10Peng Wei and Li Tao. Interval Data Clustering with Appli- cation[ C]. Proceedings of the 18th IEEE International Conference on Tools with Artificial Intelligence. 2006: 355 -362. 被引量:1

二级参考文献27

共引文献18

同被引文献29

  • 1于春海,樊治平.一种基于区间数多指标信息的FCM聚类算法[J].系统工程学报,2004,19(4):387-393. 被引量:13
  • 2任世锦,吴铁军.基于SVM的精确数-区间数回归模型建模方法[J].控制与决策,2006,21(12):1326-1331. 被引量:7
  • 3Dass R, Priyanka, Devi S. Image segmentation techniques [ J]. lnternationM Journal of Electronics & Communica- tion Technology, 2012, 3( 1 ) : 66-70. 被引量:1
  • 4Balafar M A. Fuzzy C-mean based brain MRI segmenta- tion algorithms[ J]. Artificial Intelligence Review, 2014, 41(3): 441-449. 被引量:1
  • 5Yuan Fei, Zhan Yiju, Wang Yonghu. Research on rela- tive position dissimilarity in interval-data fuzzy c-means clustering[ J ]. Signal Processing, 2010, 28 ( 10 ) : 1370- 1378. (in Chinese). 被引量:1
  • 6Bezdek J C, Robert E, William F. FCM: the fuzzy c- means clustering algorithm [ J ]. Computers & Geosci- ences, 1984, 10(2-3): 191-203. 被引量:1
  • 7Dunn J C. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters [ J ]. Journal of Cybernetics, 1974, 3(3) :32-57. 被引量:1
  • 8Zheng X L, Wang S Q, Cao Y Z, et al. Transformer fault diagnosis based on improved fuzzy ISODATA algorithm [C]//Proceedings of 2014 International Conference on Power System Technology (POWERCON), Chengdu, IEEE, 2014: 1279-1286. 被引量:1
  • 9Fergani B, Kholladi M K, Bahri M. Comparison of FCM and FISODATA [ J ]. International Journal of Computer Applications, 2012, 56(8) : 35-39. 被引量:1
  • 10Sajith A G, Hariharan S. Spatial fuzzy C-means clustering based segmentation on CT images [ C ] //Proceedings of 2015 2^rd International Conference on Electronics and Com- munication Systems, Coimbatore, IEEE, 2015 : 26-27. 被引量:1

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部