摘要
提出一种改进的模糊取最大运算和模糊减运算以确定模糊网络中的模糊时间参数.改进的基于区间数距离测度的模糊取最大运算,通过枚举不同α-cut值,计算活动的模糊最早开始时间并确定项目可能变化的关键路径,从而解决了现有的研究中忽视了在活动工期模糊的情况下关键路径可能会发生变化的问题.用改进的模糊减运算来计算活动的模糊最晚开始时间,有效避免了在传统的逆向递推计算中可能出现负的或者不可行解的情况.通过一个实例验证了所提出的方法求解模糊网络时间参数的有效性和优越性.所提出的方法不仅可用于模糊网络时间参数计算,也可以用于模糊资源受限项目调度问题.
We propose an improved fuzzy maximum operator and fuzzy subtraction operator to determine the fuzzy time parameters of fuzzy network. By enumerating different values of a-cut, the improved interval numbers distance measure-based fuzzy maximum operator computes the earliest starting fuzzy time for each activity and determines the possible changed critical path of the project, thereby fills the gap of the existing work which did not consider the fact that the critical path may change in case of fuzzy activity times. The latest starting fuzzy time for each activity is calculated by the improved fuzzy subtraction, which avoids generating negative and infeasible solution while ordinary backward recursive calculation conducted. An example is illustrated to validate the effectiveness and superiority of the proposed method on solving the fuzzy time parameters of fuzzy network. The proposed method not only can be used to the calculation of fuzzy network time parameters, but also can be used to the fuzzy resource-constrained project scheduling problem.
出处
《系统工程理论与实践》
EI
CSSCI
CSCD
北大核心
2014年第1期190-196,共7页
Systems Engineering-Theory & Practice
基金
国家自然科学基金(70871088
71272146)
关键词
模糊网络
关键路径法
模糊取最大运算
模糊减运算
fuzzy network
critical path method
fuzzy maximum operator
fuzzy subtraction operator