摘要
AIM:To study the effects of live and dead Lactobacillus rhamnosus GG(GG) on rotavirus infection in a neonatal rat model.METHODS:At the age of 2 d,suckling Lewis rat pups were supplemented with either live or dead GG and the treatment was continued daily throughout the experi-ment.At the age of 5 and 6 d the pups received oral rotavirus(RV) SA-11 strain.The pups were sacrificed at the age of 7 or 8 d by decapitation.The gastrointestinal tract was removed and macroscopic observations were done.The consistency of feces in the colon was classified using a four-tier system.RV was detected from the plasma,small intestine,colon and feces by real-time quantitative polymerase chain reaction(PCR).RESULTS:In this neonatal rat model,RV induced a mild-to-moderate diarrhea in all except one pup of the RV-inoculated rats.RV moderately reduced body weight development from day 6 onwards.On day 7,after 2 d of RV infection,live and dead GG groups gained significantly more weight than the RV group without probiotics [36%(P = 0.001) and 28%(P = 0.031),respectively].In addition,when compared with the RV control group,both live and dead GG reduced the weight ratio of colon/animal body weight to the same level as in the healthy control group,with reductions of 22%(P = 0.002) and 28%(P < 0.001),respectively.Diarrhea increased moderately in both GG groups.However,the diarrhea incidence and severity in the GG groups were not statistically significantly different as compared with the RV control group.Moreover,observed diarrhea did not provoke weight loss or death.The RV control group had the largest amount of RV PCR-positive samples among the RV-infected groups,and the live GG group had the smallest amount.Rats receiving live GG had significantly less RV in the colon(P = 0.027) when compared with the RV control group.Live GG was also more effective over dead GG in reducing the quantity of RV from plasma(P = 0.047).CONCLUSION:Both live and dead GG have beneficial effects in RV infection.GG may increase RV clearance from the body and reduce c
AIM: To study the effects of live and dead Lactobacillus rhamnosus GG (GG) on rotavirus infection in a neonatal rat model. METHODS: At the age of 2 d, suckling Lewis rat pups were supplemented with either live or dead GG and the treatment was continued daily throughout the experi-ment. At the age of ,5 and 6 d the pups received oral rotavirus (RV) SA-11 strain. The pups were sacrificed at the age of 7 or 8 d by decapitation. The gastrointestinal tract was removed and macroscopic observations were done. The consistency of feces in the colon was classi- fied using a four-tier system. RV was detected from the plasma, small intestine, colon and feces by real-time quantitative polymerase chain reaction (PCR). RESULTS: In this neonatal rat model, RV induced a mild-to-moderate diarrhea in all except one pup of the RV-inoculated rats. RV moderately reduced body weight development from day 6 onwards. On day 7, after 2 d of RV infection, live and dead GG groups gained signifi- cantly more weight than the RV group without probiot- ics [36% (P = 0.001) and 28% (P = 0.031), respec- tively]. In addition, when compared with the RV control group, both live and dead GG reduced the weight ratio of colon/animal body weight to the same level as in the healthy control group, with reductions of 22% (P = 0.002) and 28% (P 〈 0.001), respectively. Diarrhea increased moderately in both GG groups. However, the diarrhea incidence and severity in the GG groups were not statistically significantly different as compared with the RV control group. Moreover, observed diarrhea did not provoke weight loss or death. The RV control group had the largest amount of RV PCR-positive samples among the RV-infected groups, and the live GG group had the smallest amount. Rats receiving live GG had significantly less RV in the colon (P = 0.027) when compared with the RV control group. Live GG was also more effective over dead GG in reducing the quantity of RV from plasma (P = 0.047). CONCLUSION: Both live and dead
基金
Supported by Valio Ltd and the Finnish Funding Agency of Technology and Innovation
The Foundation for Nutrition Research has financially contributed to Liisa Lehtoranta’s doctoral studies