期刊文献+

固体尺度效应宏微观关联理论和方法的研究进展 被引量:5

RESEARCH ADVANCES OF MACROSCOPIC/MICROSCOPIC THEORIES OF LINKAGE FOR SIZE EFFECTS OF SOLIDS
原文传递
导出
摘要 简要综述了近年来微米尺度金属试样的实验结果及尺度效应现象、关于考虑尺度效应的唯象学理论——塑性应变梯度理论、关于金属/陶瓷界面断裂的宏、微观理论结果的差异及尺度效应、关于薄模脱胶问题的尺度效应及近年来提出和发展的几种材料细观结构的断裂过程区模型。较系统地刻划了固体力学尺度效应宏微观相互关联的理论和方法。 A concise review for the research advances of the macroscopic/ microscopic theories of linkage on size effects of solids is presented in the paper. The main considerations include the following cases. Firstly, the recent experimental results and size effect phenomena of pure metal specimens with micro-scale size are summarized. Secondly, strain gradient plasticity theory, which is a size effect consideration and a phenomenological theory is introduced. Thirdly, the difference between macroscopic theory results and microscopic theory results for metal/ceramic interface cracking and size effects are discussed. Fourthly, size effects in thin film delamination are proposed. Finally, the commonly used several fracture process zone models with microstructures are reviewed. The contents described above delineate the linkage of macroscopic/ microscopic theories for size effects of solids systematically.
作者 魏悦广
出处 《中国科学基金》 CSCD 2000年第4期221-224,共4页 Bulletin of National Natural Science Foundation of China
关键词 尺度效应 塑性应变梯度理论 薄膜脱胶 固体力学 size effects, strain gradient plasticity, thin film delamination, fracture process zone models
  • 相关文献

参考文献2

二级参考文献4

  • 1余寿文.薄膜-基底的几个力学问题[J].力学与实践,1993,15(4):1-8. 被引量:8
  • 2干东英,王立鼎.微型机械的现状与发展[J].机械工程学报,1994,30(2):1-8. 被引量:23
  • 3余寿文.固体力学与材料科学交缘的几个新课题[J].力学进展,1994,24(1):24-36. 被引量:15
  • 42薄膜脱胶的数值求解方法 考虑薄膜与基体界面裂纹的定常扩展问题.由于塑性应变梯度增量本构关系为率无关形式,故在定常扩展情况下,可将该增量本构关系转化为全量形式的偏微分方程(在主塑性区)和全量形式的线性应力应变关系(在卸载区和弹性区)[13].事实上,在定常扩展情况,所有场量的增量关系可表示为(以塑性应变张量增量为例) (10) 其中为裂纹的扩展速度,x1为原点镶嵌在裂纹顶端并指向裂尖运动方向的坐标.将有关诸如(10)式形式的关系代入率无关增量本构关系,可得主塑性区应力应变关系对x1的偏微分方程组,与裂纹扩展速度其中无关. 采用有限元方法求解这样的偏微分方程组,一个有效的方法是在主塑性区和卸载区设计等高度的单元带以便在迭代求解过程中对x1进行数值积分.在塑性应变梯度理论中,由于考虑了位移二阶导数项(或称应变梯度项)的贡献,故一般说来传统的位移有限元方法将失效,需要采用协调的纯位移导数单元进行计算.但对于I型裂纹弹塑性问题,采用9节点位移等参元可得到有效的计算结果[9].而对弹塑性薄膜的脱胶情况,裂纹尖端的混合度(Ψtip)随着/σY(EPZ模型)或者R0/t(SSV模型)的增大急速趋于0°(I型)[5],故本文采用9节点位移等参元进行计算,数值积分点采用2×2的Gauss分布. 3结果及其分析 考虑到铜薄膜,在本文的计算中采用E/σY=300,ν=0.3,N=0.1的材料参数值.考查薄膜脱胶总能量与界面分离能量比Gcrit/Γ0随模型参数/σY(EPZ模型)或者R0/t(SSV模型)以及材料微尺度l/R0的变化规律;并结合铜/二氧化硅的实验结果,预测出薄膜脱胶时的分离应力值、无位错核厚度t值以及材料微尺度l值. 图2给出了脱胶时薄膜层的主塑性区形状及大小.该图为采用EPZ模型得到的结果.由于采用SSV模型得到的结果与之完全� 被引量:1

共引文献7

同被引文献75

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部