摘要
基于压电功能梯度材料物性参数沿厚度为幂函数变化的梯度模型,引入反映设计与实现间误差的修正因子,分析中采用含压电耦合项的修正层合理论,将压电功能梯度板分为厚度足够小的若干薄层,从而可近似地认为每层的材料特性为均匀的.仅考虑电场作用,对四边简支的压电功能梯度矩形板的位移和应力场做了解析分析.在此基础上分析了材料组分分布、每一层的厚度和层数等材料细观结构参数对材料性能的影响.结果表明,在一定区域,细观结构参数对材料性能有重要影响.当超出某一范围后,细观结构参数的变化对材料性能影响甚微.
Based on the gradient model that the properties of them obey a power law with respect to the thickness of piezoelectric functionally gradient materials, a modified factor representing the error between design and implement is introduced. A modified classical laminate theory involving piezoelectric coupling terms, by which the plate is divided into a certain number of sufficiently thin layers, is employed. Thus the material properties in any layer can approximately be regarded as uniform. An analytical study for a simply supported piezoelectric functionally gradient rectangular plate subjected to an electric field is only presented. The influ- ences of microstructural parameters such as the component distribution factor, the thickness of each layer and the number of layer, on material performance are discussed. It has been found that the effects are significant in a certain range, and beyond the range the effects are neglectful. Those results can provide a certain basis for the optimization design of piezoelectric functionally gradient materials.
出处
《吉林大学学报(理学版)》
CAS
CSCD
北大核心
2006年第1期15-20,共6页
Journal of Jilin University:Science Edition
基金
国家自然科学基金(批准号:10472037)
关键词
压电功能梯度材料
细观结构参数
材料性能
piezoelectric functionally gradient materials
microstructural parameter
material performance