期刊文献+

结合标准对冲与核函数稀疏分类的目标跟踪 被引量:7

Visual object tracking combined normal hedge and kernel sparse representation classification
下载PDF
导出
摘要 针对经典稀疏分类目标跟踪算法在噪声,遮挡等恶劣环境下精度不高的问题,提出了一种新的目标跟踪算法。该算法在标准对冲框架下结合了核函数稀疏分类方法以及自适应字典更新方法,能够较好地适应类间相似度较高与目标外形变化较大等恶劣情况。核函数技巧能够增强分类器性能,但通用方法求解凸优化问题的效率较低,不能满足目标跟踪问题的实时性要求,故提出用核函数随机坐标下降(KRCD)算法来高效求解稀疏系数,并使用核函数稀疏分类方法(KRCD-SRC)来计算各个粒子的代价值。为了避免模板漂移问题,解释了目标字典和背景字典的在线更新方法。最后,结合标准对冲算法估算目标的状态信息。在使用50个粒子进行跟踪时,本文算法的处理帧率能够达到14frame/s。相比其它几种经典目标跟踪算法,本文算法具有更好的精确性和鲁棒性。 To achieve the robust tracking for a visual object under challenging conditions in the noisy, occlusion and the deformation, a novel visual object tracking method is proposed in this paper. By combining the Kernel Sparse Representation Classification (KSRC) and adaptive dictionary updating method under Normal Hedge framework, this method can handle tough situations like high inter-class similarities and drastically target appearance variations. Although the KSRC enhances classification performance, standard convex optimization is not fast enough for tracking in real time. Thus an effi- cient Kernel Random Coordinate Descent(KRCD) method is proposed to calculate the sparse coeffi- cient vector, and the KRCD-SRC classification method is taken to calculate the loss value of each par- ticle. In order to avoid the template drifting, the adaptive dictionary updating method is also given. At last, the states of the target are estimated by the Normal Hedge. Experiments show that the aver- age computing frame rate of the proposed method is 14 frame/s when 50 particles are used. Extensive test results suggest that the proposed method outperforms several state-of-art tracking methods inmany complex conditions.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2012年第11期2540-2547,共8页 Optics and Precision Engineering
基金 国家自然科学基金资助项目(No.60974090) 国家教育部博士点基金资助项目(No.102063720090013) 中央高校基本科研业务费资助项目(No.GDJXS10170010)
关键词 目标跟踪 核函数稀疏分类 自适应字典更新 标准对冲 object tracking kernel sparse representation adaptive dictionary updating NormalHedge
  • 相关文献

参考文献20

  • 1JAWARD M, BULL D, CANAGARAJAH N. Se- quential monte carlo methods for contour tracking of contaminant clouds[J].Signal Processing, 2010, 90(1) : 249-260. 被引量:1
  • 2CHEN Q, SUN Q, HENG P A, XIA D S, et al: Two-stage object tracking method based on kernel and active contour[J]. IEEE Transactions on Cir- cuits and Systems for Video Technology, 2010, 20 (4) : 605-609. 被引量:1
  • 3JING L, VADAKKEPAT P. Interacting mcmc par- ticle filter for tracking maneuvering target[J]. Dig-ital Signal Processing, 2010, 20(2) :561-574. 被引量:1
  • 4HAN Z, JIAO J, ZHANG B, etal: Visual object tracking via sample-based adaptive sparse represen- tation (AdaSR)[J]. Pattern Recognition, 2011, 44 (9) ;2170-2183. 被引量:1
  • 5XUE M, LING H B. Robust visual tracking and vehicle classification via sparse representation[J]. IEEE Transactions on Pattern Analysis and Ma- chine Intelligence, 2011, 33(11) :2259-2272. 被引量:1
  • 6WANG Q, CHEN F, XU X L, et al: Online dis criminative object tracking with local sparse representa tion [C]. IEEE Workshop on Applications of Corn puter Vision (WACV), 2012:425-432. 被引量:1
  • 7RIGAMONTI R, BROWN M A, LEPETIT V. Are sparse representations really relevant for image classification? [C]. IEEE Conference on Comput- er Vision and Pattern Recognition ( CVPR ) , 2011 : 1545-1552. 被引量:1
  • 8ZHANG L, YANG M, FENG X CH. Sparse rep- resentation or collaborative representation: Which helps face recognition? [J]. IEEE International Conference on Computer Vision, 2011:471-478. 被引量:1
  • 9HUANG K, AVIYENTE S. Sparse representation for signal classification [J]. Advances in neural in- formation processing, 2007, 16(15): 609-617. 被引量:1
  • 10GAO SH G, IVOR W T, CHIA L T. Kernel sparse representation for image classification and face recognition [J]. Lecture Notes in Computer Science, 2010, 63(14) : 1-14. 被引量:1

二级参考文献40

  • 1LSARD M,BLAKE A. A mixed-state condensation tracker with automatic model-switching[C]. In Proc. Int. Conf. Computer Vision,1998:107 -112. 被引量:1
  • 2BLACK M J,JEPSON A D. Recognizing temporal trajectories using the condensation algorithm[C]. In Proc. of the 3rd Int. Conf. Automatic Face and Gesture Recognition, 1998:16-21. 被引量:1
  • 3CZYZ J,RISTIC B, MACQ B. A particle filter for joint detection and tracking of color objeets[J]. Image Vision Computing ,2007,25(8) : 1271 - 1281. 被引量:1
  • 4CRISAN D, DOUCET A. A survey of convergence results on particle filtering methods for practitioners[J]. IEEE Trans. Speech and Audio Proc,2002, 10(3) :173-185. 被引量:1
  • 5Zhang C C, Chen X, Zhou L P, et al. Semantic retrieval of events from indoor surveillance video databases[J]. Pattern Recognition Letters, 2009, 30(12): 1067-1076. 被引量:1
  • 6Eom K Y, Ahn T K, Kim G J, et al. Fast object tracking in intelligent surveillance system[C]. Int Conf on Computational Science and Its Applications. France, 2009: 749-763. 被引量:1
  • 7Shan C F, Tan T N, Wei Y C. Real-time hand tracking using a mean shift embedded particle filter[J]. Pattern Recognition, 2007, 40(7): 1958-1970. 被引量:1
  • 8Matthews I, Cootes T F, Bangham J A, et al. Extraction of visual features for lipreading[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2002, 24(2): 198-213. 被引量:1
  • 9Siagian C, Itti L. Biologically inspired mobile robot vision localization[J]. IEEE Trans on Robotics, 2009, 25(4): 861- 873. 被引量:1
  • 10Fontanelli D, Salads P, Belo F A W, et al. Visual appearance mapping for optimal vision based servoing[C]. The 11th Int Symposium on Experimental Robotics. Athens, 2008: 353-362. 被引量:1

共引文献43

同被引文献165

  • 1彭宁嵩,杨杰,刘志,张风超.Mean-Shift跟踪算法中核函数窗宽的自动选取[J].软件学报,2005,16(9):1542-1550. 被引量:165
  • 2Yilmaz A, Javed O, Shah M. Object Tracking: A Survey [J]. ACM Joumal of Computing Surveys, 2006,38(4), 1-45. 被引量:1
  • 3Cannons K. A Review of Visual Tracking[R]. Canada: Depart- ment of Computer Science and Engineering and the Centre for Vision Research, 2008. 被引量:1
  • 4YangHan-xuan,Shao Ling,Zheng Feng,et al. Reeent advance s and trends in visual tracking:A review[J].Neurocomputing, 2011,74(6):3823-3831. 被引量:1
  • 5蔡荣太,吴元昊,王明佳,等.视频目标跟踪算法综述[J].视频技术应用与工程,2010,34(12):135-142. 被引量:1
  • 6Collins R, et al. A system for video surveillance and monitoring: VSAM final report[R]. Technical Report CMU-RI-TR-00-12. Carnegie Mellon University, 2000. 被引量:1
  • 7Haritaoglu I, Harwood D, Davis L. W4 : real-time surveillance of people and their activities[J]. IEEE Trans Pattern Analysis and Machine Intelligence, 2000,22 (8) : 809-830. 被引量:1
  • 8Remaining P I, Tan T' Baker K. Mufti-agent visual surveillance of dynamic scenes[J]. Image and Vision Computing, 1998, 16 (8) : 529-532. 被引量:1
  • 9Cannons K, Wildes R Spatiotemporal oriented energy features for visual tracking[C]//Asian Conference on Computer Vision, 2007. Tokyo, Japan: ACCV, 2007 : 532-543. 被引量:1
  • 10Fieguth P, Terzopoulos D. Color-based tracking of heads and other mobile objects at video frame rates[C]// Conference on Computer Vision and Pattern Recognition, 1997. San Juan, Puer- to Rico: CVPR, 1997: 21-27. 被引量:1

引证文献7

二级引证文献176

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部