期刊文献+

基于EMD的网络舆情演化分析与建模方法 被引量:23

Evolution Analysis and Modeling Method of Internet Public Opinions Based on EMD
下载PDF
导出
摘要 现有研究忽略网络舆情演化过程的多成分特性,导致演化分析与建模效果较差。为此,提出一种基于经验模态分解(EMD)的网络舆情演化分析与建模方法。对演化过程进行EMD分解,形成演化过程的趋势成分、周期成分、突发成分和随机成分,通过对各成分进行分析与建模,实现网络舆情的演化分析与建模。实验结果表明,该方法通过EMD分解得到的各成分物理含义明显,有助于分析网络舆情的演化规律,同时具有较好的趋势预测效果,适合进行演化建模。 The existing methods ignore multicomponent characteristics of evolution process of lntemet public opinions, which leads to an unsatisfactory performance of analysis and modeling. To deal with the problem, this paper presents an evolution analysis and modeling method of Interact public opinions based on Empirical Mode Deeomposition(EMD). It decomposes the evolution process of Internet public opinions by EMD, to form trend component, period component, mutation component and random component. Then it analyzes and models the evolution process of Interact public opinions by analyzing and modeling the above-mentioned components. Experiments show that the components decomposed by EMD have clear physical meanings, which can help to analyze the evolution patterns of Internet public opinions; at the same time, the method has good forecasting performance, thus is more suitable.
出处 《计算机工程》 CAS CSCD 2012年第21期5-9,共5页 Computer Engineering
基金 国家"863"计划基金资助项目(2007AA01Z439) 国家社会科学基金资助重大项目(09&ZD014) 全军军事学研究生课题基金资助项目
关键词 网络舆情 演化分析 演化建模 趋势预测 经验模态分解 时间序列 Internet public opinions evolution analysis evolution modeling trend forecasting empirical mode decomposition time series
  • 相关文献

参考文献12

  • 1曾润喜.网络舆情信息资源共享研究[J].情报杂志,2009,28(8):187-191. 被引量:167
  • 2Blei D M, Lafferty J D. Dynamic Topic Models[C]//Proc. of the 23rd International Conference on Machine Learning. Pittsburgh, USA: ACM Press, 2006: 113-120. 被引量:1
  • 3Stewart A, Chen Ling, Paiu R, et al. Discovering Information Diffusion Paths from Blogosphere for Online Advertising[C]//Proc of the 1 st International Workshop on Data Mining and Audience Intelligence for Advertising. San Jose, USA: ACM Press, 2007: 46-53. 被引量:1
  • 4王根生,勒中坚,陆旭,黄玉波,丁菊玲,杨波.迁移元胞自动机网络舆情演化模型(M^2CA)[J].情报学报,2011,30(6):570-576. 被引量:20
  • 5高辉,王沙沙,傅彦.Web舆情的长期趋势预测方法[J].电子科技大学学报,2011,40(3):440-445. 被引量:30
  • 6Zeng Jianping, Zhang Shiyong, Wu Chengrong, et al. Predictive Model for Internet Public Opinion[C]//Proc. of the 4th International Conference on Fuzzy Systems and Knowledge Discovery. Haikou, China: IEEE Press, 2007:7-11. 被引量:1
  • 7张珏..网络舆情预测模型与平台的研究[D].北京交通大学,2009:
  • 8Huang N E, Shen Zheng, Long S R, et al. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis[J]. Proceedings of the Royal Society, 1998, 454(1971): 903-995. 被引量:1
  • 9Niang O, Del6chelle E, Lemoine J. A Spectral Approach for Sifting Process in Empirical Mode Decomposition[J]. IEEE Transactions on Signal Processing, 2010, 58(11): 5612-5623. 被引量:1
  • 10艾瑞咨询集团.全球最具影响力中文论坛100强[EB/OL].(2009-03-14).http,://bbs.ifeng.com/zhuanti/bbstopl00/index.html. 被引量:1

二级参考文献39

共引文献241

同被引文献226

引证文献23

二级引证文献242

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部