期刊文献+

频繁项集高效挖掘算法研究 被引量:2

Study on Efficient Algorithm of Frequent Item-set Mining
下载PDF
导出
摘要 为进一步提高频繁项集挖掘算法的可扩展性,对频繁项集的搜索空间以及FP-tree的操作方法进行了研究。在此基础上提出了基于frequent-pattern链表的高效频繁项集挖掘算法FPL-Growth。FPL-Growth运用递增构建候选项集策略和Apriori性质来缩小搜索空间,运用交叉计数方法快速获取频繁项集的支持数。最后的实验证明了该算法的有效性。 To further improve the scalability of the algorithm for frequent item-set mining,studies on the frequent item-set search space and the FP-tree operation method were made.On this basis,an efficient algorithm for frequent itemset mining based on the fre- quent-pattern list is presented,which employs the strategy of incremental construction of the candidate itemset and Apriori property to reduce the searching space,and gets support-count of the frequent itemset by intersecting tid-list. Lastly the algorithm is realized on experiment and is proved to be efficient.
作者 刘芝怡 常睿
出处 《微计算机信息》 2012年第10期491-493,共3页 Control & Automation
关键词 frequent-pattern链表 频繁项集 数据挖掘 frequent-pattern list frequent itemset data mining
  • 相关文献

参考文献5

  • 1Agrawal R, Srikant R. Fast Algorithms for Mining AssociationRules in Large Databases [C].In Proceedings of the 20th Interna-tional Conference on Very Large Databases,1994:487-499. 被引量:1
  • 2Han J, Pei J, Yin Y. Mining frequent patterns without candi-date generation [C].In Proceedings of the ACM SIGMOD, 2000: 1-12. 被引量:1
  • 3Park J S, Chen M S,Yu P S. An effective hash -based algo-rithm for mining association rulesfC].In Proceedings of 1995 ACMSIGMOD International Conference on Management of Data, 1995:175- 186. 被引量:1
  • 4Brin S, Motwani R,Ullman J D, Tsur S. Dynamic itemsetcounting and implication rules for market basket data [C].In Pro-ceedings of the 1997 ACM SIGMOD International Conference onManagement of Data,1997: 255 _ 264. 被引量:1
  • 5陈凯,冯全源.基于矩阵伪投影策略的频繁项集挖掘方法[J].微计算机信息,2005,21(11X):85-87. 被引量:8

二级参考文献8

  • 1R. Agrawal, and R. Srikant. Fast Algorithms for Mining Association Rules [A]. In Proceeding of the 20th VLDB Conferencei [C], Santiago,Chile, 1994. 被引量:1
  • 2A. Silbersehatz, and A. Tuzhilin. What Make Patterns Interesting in Knowledge Diseovery Systems [J]. In IEEE Transaetion on Knowledge and Data Engineering, Dec. 1996. 被引量:1
  • 3J. Han, J. Pei, and Y. Yin. Mining Frequent Patterns without Candidate Generation [A]. In Proceeding of ACM SIGMOD" 00 [C], May. 2000. 被引量:1
  • 4M. J. Zaki, and C. Hsiao. CHARM: An Efficient Alogrithm for Closed Itemset Mining [A]. In SDM" 02 [C], Apr. 2002. 被引量:1
  • 5L. Li, and F. Jin. A New Algorithm form Mining Frequent Pattern [A].Journal of Southwest Jiaotong University, May. 2002. 被引量:1
  • 6J. Han and M. Kamber. Data Mining: Concepts and Techniques [M].Morgan Kaufmann Publishers, San Francisco, CA, 2001. 被引量:1
  • 7宋余庆,朱玉全,孙志挥,陈耿.基于FP-Tree的最大频繁项目集挖掘及更新算法[J].软件学报,2003,14(9):1586-1592. 被引量:164
  • 8王晓峰,王天然,赵越.一种自顶向下挖掘长频繁项的有效方法[J].计算机研究与发展,2004,41(1):148-155. 被引量:27

共引文献7

同被引文献6

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部