期刊文献+

利用分布式数据库实现高效查找频繁项集

USING DISTRIBUTED DATABASE REALIZE FINDINGFREQUENT ITEM SETS HIGH EFFECTIVLY
下载PDF
导出
摘要 数据挖掘的目的是为了发现有效的关联规则从而找到不易发现的规律从而对企业的决策提供帮助,而查找频繁项集是发现有效关联规则的基础,其基础算法是Apriori算法。分布式数据库是目前较为流行的一种的数据库开发模式,它通过将一套完整的数据库系统分别部署在几台电脑上可以实现几台电脑并行处理数据从而提高数据库的效率。本文通过分析一个查找频繁项集的例子提出了一种将改进的频繁项集查找算法与分布式数据库相结合的方法从而实现频繁项集的高效查找。 The purpose of Data mining is to find effective Association rules. Through these Association rules to find some rules that are not easy to find. Through these rules to help the headers of the companies to make decisions. Finding frequent item sets is the base of finding Association rules. The base algorithm of finding frequent item sets is Apriori. Distributed database is a popular pattern of developing database, it can distribute a set of Database Manager System on several computers to realize improving the effective of the Database Manager System. Through the analysis of an example of finding frequent item sets this paper present a new method to find frequent item sets. This method combines a new method of finding frequent items and distributed database. Through this method we can find frequent items more effectively.
出处 《微计算机信息》 北大核心 2006年第05X期175-177,共3页 Control & Automation
基金 国家863计划空间信息多级网格的框架设计与相关技术研究编号:2003AA132080 地大杰出青年基金编号:CUGQNL0506
关键词 数据挖掘 分布式数据库 项集 频繁项集 Data Mining Distributed Database Item sets Frequent item sets
  • 相关文献

参考文献3

二级参考文献8

  • 1R. Agrawal, and R. Srikant. Fast Algorithms for Mining Association Rules [A]. In Proceeding of the 20th VLDB Conferencei [C], Santiago,Chile, 1994. 被引量:1
  • 2A. Silbersehatz, and A. Tuzhilin. What Make Patterns Interesting in Knowledge Diseovery Systems [J]. In IEEE Transaetion on Knowledge and Data Engineering, Dec. 1996. 被引量:1
  • 3J. Han, J. Pei, and Y. Yin. Mining Frequent Patterns without Candidate Generation [A]. In Proceeding of ACM SIGMOD" 00 [C], May. 2000. 被引量:1
  • 4M. J. Zaki, and C. Hsiao. CHARM: An Efficient Alogrithm for Closed Itemset Mining [A]. In SDM" 02 [C], Apr. 2002. 被引量:1
  • 5L. Li, and F. Jin. A New Algorithm form Mining Frequent Pattern [A].Journal of Southwest Jiaotong University, May. 2002. 被引量:1
  • 6J. Han and M. Kamber. Data Mining: Concepts and Techniques [M].Morgan Kaufmann Publishers, San Francisco, CA, 2001. 被引量:1
  • 7宋余庆,朱玉全,孙志挥,陈耿.基于FP-Tree的最大频繁项目集挖掘及更新算法[J].软件学报,2003,14(9):1586-1592. 被引量:164
  • 8王晓峰,王天然,赵越.一种自顶向下挖掘长频繁项的有效方法[J].计算机研究与发展,2004,41(1):148-155. 被引量:27

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部