期刊文献+

基于AR模型和主成分分析的损伤识别方法 被引量:9

Damage Identification Based on AR Model and PCA
下载PDF
导出
摘要 基于结构加速度时间序列提出了一种新的损伤识别方法。首先,获取结构在无损伤状态下的加速度数据并进行分段,以各段数据的AR(auto-regressive)模型系数向量作为结构的参考状态样本,将未知状态的加速度AR模型系数向量分别加入参考状态样本中,构成多个原始数据矩阵;其次,对多个原始数据矩阵分别进行主成分分析得到前两阶主成分,并建立相应的椭圆控制图,以前两阶主成分在控制椭圆中的分布情况来判别结构是否存在损伤;最后,以一钢框架结构试验为例识别结构的两种损伤模式。结果显示,该方法能够准确、直观地识别结构是否存在损伤,相对于马氏距离判别法具有更强的稳定性。 A new method of damage identification is presented based on the time series of structure acceleration data. Firstly, the acceleration data of undamaged structure is sampled and partitioned into several streams, the auto regressive (AR) coefficients of all data streams are served as reference samples. Secondly, the AR coefficients of damaged structure acceleration data are added into the reference samples separately, and several original data matrixes are constructed. Then, the principal component analysis (PCA) is used to extract the first two principal components (PC) of these matrixes, and the corresponding control ellipses are constructed. It is observed that the first two PCs from damaged structure are all out of the corresponding control ellipse. At last, the experiment of a steel-made frame structure is used to test the validity of the method, the testing results show that the method can identify the two different damage modes correctly, and has more stability than the one based on Mahalanobis distance.
出处 《振动.测试与诊断》 EI CSCD 北大核心 2012年第5期841-845,868,共5页 Journal of Vibration,Measurement & Diagnosis
关键词 AR模型 主成分分析 控制椭圆 马氏距离 损伤识别 AR model,principle component analysis,control ellipse,Mahalanobis distance,damage identification
  • 相关文献

参考文献9

  • 1郭健,陈勇,孙炳楠.桥梁健康监测中损伤特征提取的小波包方法[J].浙江大学学报(工学版),2006,40(10):1767-1772. 被引量:10
  • 2孙增寿,任伟新.基于小波熵指标的结构损伤检测[J].振动.测试与诊断,2008,28(3):233-237. 被引量:12
  • 3Krishnan K N,Kiremidjian A S,Kincho H L. Timeseries-based damage detection and localization algo-rithm with application to the ASCE benchmark struc-tured]. Journal of Sound and Vibration, 2006,291:349-368. 被引量:1
  • 4Mustafa G,Necati F C. Statistical pattern recognitionfor structure health monitoring using time series mod-eling :theory and experimental verifications [J]. Me-chanical Systems and Signal Processing, 2009, 23:2192-2204. 被引量:1
  • 5Hoon S,Charles R F. Damage diagnosis using timeseries analysis of vibration signals[J]. Smart Materi-als and Structures, 2001,10:446-451. 被引量:1
  • 6Michael L F, Hoon S, Charles R F. Vibration-baseddamage detection using statistical process control [J].Mechanical Systems and Signal Processing, 2001,15(4):707-721. 被引量:1
  • 7杨叔子,吴雅,轩建平等著..时间序列分析的工程应用 下 第2版[M].武汉:华中科技大学出版社,2007:305.
  • 8Housner G W,Bergman L A, et al. Structural con-trol :past, present and future [J]. Journal Engineer-ing Mechanics,1997,123(9) :897-971. 被引量:1
  • 9Farrar C R. Duffery T A, Doebling S W, et al. Astatistical pattern recognition paradigm for vibration-based structural health monitoring [C] The 2nd Inter-national Workshop on Structural Health Monitoring.Stanford, CA, 1999. 被引量:1

二级参考文献16

共引文献20

同被引文献83

引证文献9

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部