期刊文献+

基于多传感器信息融合的结构损伤识别研究 被引量:11

Study of structural damage identification based on multi-sensor information fusion
下载PDF
导出
摘要 针对结构健康监测系统中的传感器数量多、数据信息复杂的特点,从模式识别和局部控制、全局参与的思想出发,提出了多传感器信息融合方法对结构损伤进行识别。首先应用小波包变换对结构振动测试数据进行特征提取,通过不同传感器特征向量的合成完成数据层融合;然后建立三个耦合神经网络分别实现结构损伤的确认、定位及定量,并完成决策层的信息融合;最后进行了36个损伤工况的结构模型实验研究,验证了所提出的方法是可行的和有效的。从实验验证的结果来看,对损伤率在7.5%以上的结构,损伤识别精度较高;对于损伤确认和损伤定位,识别精度较高,而对于损伤程度识别有一定偏差。 For the reason that there are too many sensors and data structural health monitoring system and based on the ideas of pattern classification and local decision referring global information, a method of multi-sensor information fusion is proposed to conduct damage identification in the paper. Firstly, Wavelet packet transform is introduced to extract features of vibration measured data and information fusion of data layer is conducted by assembling feature vectors of different sensors. Secondly, three coupling neural networks are constituted to realize damage validity, damage localization and damage quantification and to complete information fusion of decision layer. Finally, an experiment of three-story frame structure is conducted to prove the validity and feasibility of the proposed method by simulating 36 damage conditions. As a result, there is a good precision to identify damage of rigidity reductions of 7.5% or more. A good result in damage validity and damage location is obtained, and the error in damage quantification is small.
机构地区 浙江大学土木系
出处 《振动工程学报》 EI CSCD 北大核心 2005年第2期155-160,共6页 Journal of Vibration Engineering
关键词 结构振动 损伤识别 信息融合 小波包 耦合神经网络 Data processing Identification (control systems) Neural networks Sensor data fusion Sensors Structural frames Structures (built objects) Vibrations (mechanical) Wavelet transforms
  • 相关文献

参考文献7

  • 1Scott W Doebling, Charles R Farrar, Micheal B Prime. A summary review of vibration-based damage identification methods [ J ]. The Shock and Vibration Digest, 1998,30(2): 91-105. 被引量:1
  • 2边肇祺等编著..模式识别 第2版[M].北京:清华大学出版社,2000:338.
  • 3Kurtis Gurley, Ahsan Kareem. Application of wavelet transform in earthquake, wind and ocean [ J ]. Engineering Structures,1999,21(3): 149-167. 被引量:1
  • 4Sun Z, Chang C C. Structural damage assessment based on wavelet packet transform [ J ]. Journal of Structural Engineering, 2002,128(10): 1354-1361. 被引量:1
  • 5Gary G Yen, Lin Kuo-Chung. Wavelet packet feature extraction for vibration monitoring[ J ]. IEEE Transaction on Industrial Electronics, 2000, 47 (3): 650-667. 被引量:1
  • 6郭健,孙炳楠.基于小波变换的桥梁健康监测多尺度分析[J].浙江大学学报(工学版),2005,39(1):114-118. 被引量:40
  • 7Wu X,Ghaboussi J,Garrett Jr J H. Use of neural networks in detection of structural damage[ J ]. Computers & Structures, 1992,42(4) : 649 - 659. 被引量:1

二级参考文献7

  • 1DOEBLING W, FARRAR R, PRIME B. A summary review of vibration-based damage identification methods [J]. The Shock and Vibration Digest, 1998, 30(2) :91 -105. 被引量:1
  • 2WANG W J. Application of orthogonal wavelets to early gear damage detection[J]. Mechanical Systems and Signal Processing, 1995, 9(5) : 497 - 507. 被引量:1
  • 3HOU Z K, NOORI M, AMAND R St. Wavelet-based approach for structural damage detection[J]. Journal of EM, ASCE, 2000, 126(7): 677-683. 被引量:1
  • 4SUN Z, CHANG C C, Structural damage assessment based on wavelet packet transform[J]. Journal of Structural Engineering, 2002, 128(10): 1354 - 1361. 被引量:1
  • 5MALLAT S, HWANG W L. Singularity detection and processing with wavelets [J]. IEEE Transaction on Information Theory, 1992, 38(2) : 617 - 643. 被引量:1
  • 6DOEBLING S W, FARRAR C R, PRIME M B, et al.Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: A literature review[R]. Los Alamos:Los Alamos National Laboratory, 1996. 被引量:1
  • 7林建忠,吴法理,倪利民.流场拟序结构的三维小波分析算法[J].浙江大学学报(工学版),2002,36(2):156-161. 被引量:3

共引文献39

同被引文献146

引证文献11

二级引证文献105

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部