期刊文献+

无标度立体Koch网络上随机游走的平均吸收时间

Exact solution for mean trapping time of random walk on a scale-free Koch network
原文传递
导出
摘要 作为一种基本的动力学过程,复杂网络上的随机游走是当前学术界研究的热点问题,其中精确计算带有陷阱的随机游走过程的平均吸收时间(mean trapping time,MTT)是该领域的一个难点.这里的MTT定义为从网络上任意一个节点出发首次到达设定陷阱的平均时间.本文研究了无标度立体Koch网络上带有一个陷阱的随机游走问题,解析计算了陷阱置于网络中度最大的节点这一情形的网络MTT指标.通过重正化群方法,利用网络递归生成的模式,给出了立体Koch网络上MTT的精确解,所得计算结果与数值解一致,并且从所得结果可以看出,立体Koch网络的MTT随着网络节点数N呈线性增长.最后,将所得结果与之前研究的完全图、规则网络、Sierpinski网络和T分形网络进行比较,结果表明Koch网络具有较高的传输效率. As a basic dynamical process, random walk on networks is fundamental to many branches of science, and has attracted much attention. A difficult problem in the study of random walk is how to obtain the exact solution for the mean trapping time (MTT) of this process. The MTT is defined as the mean time for the walker staring from any node in the network to first reach the trap node. In this paper, we study random walk on the Koch network with a trap located at the highest degree node and calculate the solution for MTT. The accurate expression for the MTr is obtained through the recurrence relation and the structure properties of the Koch network. We confirm the correctness of the MTT result by direct numerical calculations based on the Laplacian matrix of Koch network. It can be seen from the obtained results that in the large limit of network size, the MTT increases linearly with the size of network increasing. Comparison between the MTT result of the Koch network with that of the other networks, such as complete graph, regular lattices, Sierpinski fractals, and T-graph, shows that the Koch has a high transmission efficiency.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2012年第20期97-104,共8页 Acta Physica Sinica
基金 国家自然科学基金(批准号:71171122,90612003) 山东省自然科学基金(批准号:ZR2010FM003,2009ZRB019PF) 山东高校科研发展计划(批准号:J11LG11)资助的课题~~
关键词 复杂网络 Koch网络 随机游走 平均吸收时间 complex networks, Koch network, random walk, mean trapping time
  • 相关文献

参考文献32

  • 1Albert R,Jeong H,Barabasi A L 1999 Nature 401 130. 被引量:1
  • 2Cami A,Deo N 2008 Networks 51 211. 被引量:1
  • 3Faloutsos M,Faloutsos P,Faloutsos C 1999 Comput. Commun. Rev. 29 251. 被引量:1
  • 4Xu T,Chen R,He Y 2004 Int. J. Mod. Phys. B 18 2599. 被引量:1
  • 5Guimerá R,Amaral L A N 2004 Eur. Phys. J. B 38 381. 被引量:1
  • 6Dorogovtsev S N,Goltsev A V,Mendes J F F 2008 Rev. Mod. Phys. 80 1275. 被引量:1
  • 7Spitzer F 1964 Principles of Random Walk(1st Ed.)(Princeton,N. J.: van Nostrand)p402. 被引量:1
  • 8Lloyd A L,May R M 2001 Science 292 1316. 被引量:1
  • 9Shlesinger M F 2006 Nature 443 281. 被引量:1
  • 10Pandit S A,Amritkar R E 2001 Phys. Rev. E 63 041104. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部