期刊文献+

我国宏观经济周期性特征研究——基于高维机制转换因子模型的考察 被引量:1

STUDY ON CHINA'S BUSINESS CYCLE——A Large-dimensional Regime-switching Factor Model Approach
下载PDF
导出
摘要 本文利用高维机制转换因子模型(LD-RS-FM)研究大规模经济数据的机制转换特征和经济的周期性特征。借助主成分分析(PCA)和共同因子自回归的二步分析方法,LD-RS-FM从大规模变量中提炼出维数较小并可以概括经济周期运动的共同因子,在此基础上进行机制转换分析。这些共同因子代表了大部分宏观经济运动的趋势和特征,并具有明显的结构化含义。实证结果表明,LD-RS-FM在中国宏观经济周期性特征研究方面具有一定的理论和应用价值。 This paper focused on high dimensional economic variables that were subject to regime switching and put forward a new model: large-dimensional regime-switching factor model (LD-RS-FM). Based on a two-step analysis, principal component analysis and autoregressive analysis, the model pro- posed here was capable of capturing important macroeconomic features, such as co-movements and struc- tural changes, with a very small number of representative common factors. Therefore, these factors could be used for purpose of regime switching analysis. Additionally, there were also some structural meanings underlying these factors. Conclusions suggested that LD-RS-FM was a powerful tool for the study the bus-iness cycle features of Chinese macro-economy.
作者 刘振亚 邓磊
出处 《经济理论与经济管理》 CSSCI 北大核心 2012年第10期12-24,共13页 Economic Theory and Business Management
基金 教育部人文社会科学重点研究基地重大项目(2009JJD790050)
关键词 经济周期 因子模型 机制转换 主成分分析 , business cycle factor model regime switching PCA
  • 相关文献

参考文献38

  • 1Ben Bernanke, Jean Boivin, Piotr S. Eliasz. Measuring the Effects of Monetary Policy: A Factor-augmented Vector Autoregressive (FAVAR) Approach [J]. The Quarterly Journal of Economics, 2005, 120 (1). 被引量:1
  • 2J. H. Stock, M.W. Watson. Implications of Dynamic Factor Models for VAR Analysis [R]. NBER Working Papers 11 467, 2005. 被引量:1
  • 3James D. Hamilton. A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle [J]. Econometrica, 1989, 57 (2). 被引量:1
  • 4Jesus Fernandez Villaverde , Juan Rubio Ramirez. Macroeconomics and Volatility.. Data, Models, and Estimation [R]. NBER Working Papers 16 618, 2010. 被引量:1
  • 5V. Zarnowitz . The Old and the New in U. S. Economic Expansion of the 1990s[R]. NBER Working Paper 7 721, 2000. 被引量:1
  • 6C. J. Kim, C. R. Nelson. State Space Model with Regime Switching~ Classical and Gibbs-sampling Approaches with Applications[M]. The MIT Press, 1999. 被引量:1
  • 7Marcelle Chauvet, James H. Hamilton. Dating Business Cycle Turning Points in Real Time [J]. Nonlinear Time Series Analysis of Business Cycles, 2006, (276). 被引量:1
  • 8F.X. Diebold, G. Rudebusch. Measuring Business Cycles: A Modern Perspective [J]. Review of Economics and Statistics, 1996, (78). 被引量:1
  • 9Hans Martin Krolzig. Markov-Switching Vector Autoregressions.. Modelling, Statistical Inference, and Application to Business Cycle Analysis[M]. Springer, 1997. 被引量:1
  • 10陈磊,高铁梅.利用Stock-Watson型景气指数对宏观经济形势的分析和预测[J].数量经济技术经济研究,1994,11(5):53-59. 被引量:29

二级参考文献103

共引文献179

同被引文献2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部