摘要
经典单参数奇异积分算子与多参数乘积型奇异积分算子既有联系也有区别。文中建立一套介于两者之间的奇异积分算子理论,给出该类算子的Lp(p>1)有界性。其中L2有界性是利用傅里叶变换与分部积分等方法得到的。一般的Lp(p>1)有界性是利用经典的Littlewood-Paley-Stein理论和方法得到的。
A set of theory of singular integral operators is established,which can be seen as the middle class between the classical single-parameter singular integral operators and the multi-parameter product singular integral operators.The Lp(p〉1) boundedness for these operators is obtained,where the L2boundedness of these operators is obtained by the method of Fourier transform and integration by part and the Lp(p〉 1) boundedness is obtained by the classical method of Littlewood-Paley-Stein theory.
出处
《中山大学学报(自然科学版)》
CAS
CSCD
北大核心
2012年第5期58-62,共5页
Acta Scientiarum Naturalium Universitatis Sunyatseni
基金
国家自然科学基金资助项目(11026215)
高等学校博士学科点专项科研基金资助项目(20104402120002)
广东省自然科学基金资助项目(10451503101006384)
关键词
基础数学
傅里叶分析
奇异积分算子
foundations of mathematics
Fourier analysis
singular integral operator