期刊文献+

非齐性空间上新型奇异积分算子的弱(1,1)不等式

Weak(1,1) Inequality for New Type Singular Integral Operators on Nonhomogeneous Spaces
下载PDF
导出
摘要 经典的奇异积分算子是满足大小条件和光滑性条件的L2有界线性算子,而该类算子的其中一个重要结论是满足弱(1,1)不等式。在非双倍测度空间上定义一类新型的奇异积分算子,并且证明该类算子也满足弱(1,1)不等式,推广Duong类奇异积分算子理论到非双倍测度的情形。 It is well-known that the classical singular integral operators are linear L2 bounded operators that satisfy the size and smoothness conditions.An important property of these operators is that they satisfy the weak(1,1) inequality.A new type class of singular integral operators on nonhomogeneous spaces is defined,and the weak(1,1) inequality is proved,which extend Duong's results to the nonhomogeneous spaces.
作者 谭超强
出处 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第2期20-24,共5页 Acta Scientiarum Naturalium Universitatis Sunyatseni
基金 国家自然科学基金资助项目(11026215) 广东高校优秀青年创新人才培育资助项目(LYM08059) 广东省自然科学基金资助项目(10451503101006384) 高等学校学科点专项科研基金资助课题(20104402120002)
关键词 增长性条件 奇异积分算子 弱(1 1)不等式 growth condition singular integral operators weak(1 1) inequality
  • 相关文献

参考文献12

  • 1FEFFERMAN C. Inequalities for strongly singular convolution operators [J]. Acta Math, 1970, 124( 1 ) : 9 - 36. 被引量:1
  • 2CHRIST M. Weak - type ( 1,1 ) bounds for rough operators [J]. Ann Math, 1988, 128(1): 19 -42. 被引量:1
  • 3CHRIST M, RUBIO DE FRANCIA J L. Weak - type ( 1, 1 ) bounds for rough operators Ⅱ [ J ]. Invent Math, 1988, 93 ( 1 ) : 225 - 237. 被引量:1
  • 4HOFMANN S. Weak ( 1,1 ) boundedness of singular in- tegrals with nonsmooth kernel [ J]. Proc Amer Math Soc, 1988, 103(1) : 260 -264. 被引量:1
  • 5SEEGER A. Singular integral operators with rough convolution kernels [J]. J Amer Math Soc, 1996, 9(1) :95 - 105. 被引量:1
  • 6DUONG X T, MCINTOSH A. Singular integral operators with non - smooth kernels on irregular domains [ J ]. Rev Mat Iber, 1999, 15(2) : 233 -265. 被引量:1
  • 7TOLSA X. A proof of the weak ( 1,1 ) inequality for sin- gular integrals with non doubling measures based on a Calderon - Zygmund decomposition [ J ]. Publ Mat, 2001, 45 ( 1 ) : 163 - 174. 被引量:1
  • 8GARCIA - CUERVA J, MARTELL J M. Weighted ine-qualities and vector - valued Calderon - Zygmund opera- tors on nonhomogeneous spaces [ J ]. Publications Matematiques, 2000, 44:613 - 640. 被引量:1
  • 9NAZAROV F, TREIL S, VOLBERG A. Weak type esti-mates and Cotlar inequalities for Calderon -Zygmund operators in nonhomogeneous spaces [ J ]. Int Math Res Not, 1998, 9:463 -487. 被引量:1
  • 10NAZAROV F, TREIL S, VOLBERG A. Cauchy integral and Calderon - Zygmund operators on nonhomogeneous spaces [J]. Int Math Res Not, 1997, 15:703 -726. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部