期刊文献+

一类求解非线性方程的最优的4阶收敛的迭代法 被引量:1

A Family of Optimal Iterative Methods with Fourth Orders Convergence For Nonlinear Equations
下载PDF
导出
摘要 本文利用权函数方法给出了一类求解非线性方程单根的最优4阶收敛的迭代法。该方法每步迭代需要计算两个函数值和一个一阶导数值,因此该方法的效率指数为1.587。最后通过数值试验与其它方法进行了比较,显示了该方法的优越性。 In this paper,we present a new family of optimal fourth-order iterative methods for solving nonlinear equations by using weight function approach.Per iteration of the new method reaches optimal orders with two functional evaluations and one evaluation of first-order derivative,which implies that the efficiency indices of the new method is 1.587.Finally,numerical comparisons are made to show the performance of the presented methods,as shown in the illustration examples.
作者 王晓锋
出处 《长春理工大学学报(自然科学版)》 2012年第3期114-116,119,共4页 Journal of Changchun University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金(11101051)
关键词 非线性方程 最优阶 4阶收敛 迭代法 求根 nonlinear equations optimal order fourth-order convergence root-finding
  • 相关文献

参考文献10

二级参考文献29

  • 1张荣,薛国民.修正的三次收敛的牛顿迭代法[J].大学数学,2005,21(1):80-82. 被引量:26
  • 2陈新一.NEWTON迭代法的一个改进[J].数学的实践与认识,2006,36(2):291-294. 被引量:10
  • 3王霞,赵玲玲,李飞敏.牛顿方法的两个新格式[J].数学的实践与认识,2007,37(1):72-76. 被引量:36
  • 4易大义,沈云宝,李有法.计算方法[M].杭州:浙江大学出版社,2006. 被引量:8
  • 5OZBan A Y. Some Variants of Newton' s Methods [ J ]. Applied Mathematics Letters ,2004,17:677 - 682. 被引量:1
  • 6Ostrowski A M. Solution of Equations in Euclidean and Banach Space, third edIM]. Academic Press, New York, 1973. 被引量:1
  • 7Traub J F. Iterative Methods for Solution of Equations[M]. Prentice-Hall, Englewood Cliffs, N J, 1964. 被引量:1
  • 8Gutierrez J M and Hernendez M A. A family of Chebyshev-Halley type methods in Banach spaces[J]. Bull Aust Math. Soc, 1997, 55: 113-130. 被引量:1
  • 9Ozban A Y. Some new variants of Newton's method[J]. Appl Math Lett, 2004, 17:677-682. 被引量:1
  • 10S. Weerakoon and T. G. I. Fernando, A variant of Newton's method with accelerated third-order convergence[J]. Appl Math Lett, 2000, 13(8): 87-93. 被引量:1

共引文献25

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部