期刊文献+

一类新的求解非线性方程的七阶方法 被引量:13

A New Familiy of Seventh-Order Methods for Solving Non-Linear Equations
原文传递
导出
摘要 利用权函数法给出了一类求解非线性方程单根的七阶收敛的方法.每步迭代需要计算三个函数值和一个导数值,因此方法的效率指数为1.627.数值试验给出了该方法与牛顿法及同类方法的比较,显示了该方法的优越性.最后指出Kou等人给出的七阶方法是方法的特例. In this paper, we developed a new family of seventh-order methods for solving simple roots of non-linear equations by the weight function method. Per iteration these meth- ods require three evaluations of the function and one evaluation of the first derivative, which implies that the efficiency indices is 1.627 for the seventh-order methods. These methods are comparable with Newton's method and the other similar methods, as shown in the illustration examples, which shows the advantages of the proposed method. Notice that Kou et al.'s method is a special case of the developed family of seventh-order methods.
作者 刘雅妹 王霞
出处 《数学的实践与认识》 CSCD 北大核心 2011年第14期239-245,共7页 Mathematics in Practice and Theory
基金 河南省基础与前沿技术研究项目(112300410190) 河南省教育厅自然科学基金项目(2010A520046)
关键词 七阶收敛 非线性方程 权函数 收敛阶 效率指数 seventh-order convergence non-linear equation weight function method convergence order efficiency index
  • 相关文献

参考文献17

  • 1Ostrowski A M. Solution of Equations in Euclidean and Banach Space, third edIM]. Academic Press, New York, 1973. 被引量:1
  • 2Traub J F. Iterative Methods for Solution of Equations[M]. Prentice-Hall, Englewood Cliffs, N J, 1964. 被引量:1
  • 3Gutierrez J M and Hernendez M A. A family of Chebyshev-Halley type methods in Banach spaces[J]. Bull Aust Math. Soc, 1997, 55: 113-130. 被引量:1
  • 4Ozban A Y. Some new variants of Newton's method[J]. Appl Math Lett, 2004, 17:677-682. 被引量:1
  • 5S. Weerakoon and T. G. I. Fernando, A variant of Newton's method with accelerated third-order convergence[J]. Appl Math Lett, 2000, 13(8): 87-93. 被引量:1
  • 6Jisheng Kou and Yitian Li, The improvements of Chebyshev-Halley methods with fifth-order con- vergence[J]. Appl Math Comput, 2007, 188: 143-147. 被引量:1
  • 7Jisheng Kou and Yitian Li. An improvement of the Jarratt method[J]. Appl Math Comput, 2007, 189: 1816-1821. 被引量:1
  • 8Jisheng Kou. Some new sixth-order methods for solving non-linear equations[J]. Appl. Math. Comput, 2007, 189: 647-651. 被引量:1
  • 9Xiuhua Wang, Jisheng Kou and Yitian Li. A variant of Jarratt method with sixth-order conver- gence[J]. Appl Math Comput, 2008, 204: 14-19. 被引量:1
  • 10Changbum Chun. Some improvements of Jarratt's method with sixth-order convergence[J]. Appl Math ComDut, 2007, 190: 1432-1437. 被引量:1

同被引文献75

引证文献13

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部