期刊文献+

基于折反射全景侦察图像的差分分块消除运动目标检测算法

Differential Block Elimination Moving Target Detection Algorithm Based on Catadioptric Panoramic Reconnaissance Image
下载PDF
导出
摘要 针对折反射全景侦察图像信息量非常大不方便人眼观察其中有用信息的特点,通过研究目前运动目标检测方法,提出一种差分分块消除运动目标检测算法。该算法的关键点包括:一是最佳分割阈值的确定方法;二是分块宽度的确定方法;三是确定哪些块可消除、哪些块可保留的判定方法。实验结果表明该算法能很好的检测出真正的运动目标,且能很好的抑制虚假目标。该算法效果明显,但仿真时间增加不多。 Aiming at the characteristics of large amount of information included by the catadioptric panoramic reconnaissance image and the useful information inside the image not conveniently observed by naked eyes, through researching the characteristics of the current moving targets detection methods, a differential block elimination moving target detection algorithm was presented. The key techniques of this algo- rithm included: first, determine the best segmentation threshold; the second is to determine the block width; the third is the judging meth- od to determine which blocks can be eliminated and which blocks can be kept. Experimental results show that the algorithm can not only well detect the real moving targets, but also well prevent the false targets. The algorithm effect is obvious, but simulation time has no much increase.
出处 《弹箭与制导学报》 CSCD 北大核心 2012年第4期185-187,194,共4页 Journal of Projectiles,Rockets,Missiles and Guidance
基金 国家自然科学基金(41101373)资助
关键词 折反射全景图像 差分分块消除 运动目标检测 全景侦察 catadioptric panoramic image differential block elimination moving target detection panoramic reconnaissance
  • 相关文献

参考文献8

  • 1Haritaoglu I, Harwood D, Davis L. W4: Real-time surveillance of people and their activities[ J]. IEEE Trans Pattem Analysis and Machine Intelligence, 2000, 22 ( 8 ): 809-830. 被引量:1
  • 2Ohta N. A statistical approach to background subtraction for surveillance systems[ C]//In Int. Conf. Computer Vision, 2001:481-486. 被引量:1
  • 3Mckenna S J, Jabri Z, Rosenfeld A, et al. Tracking groups of people [J]. Computer Vision and Image Understanding, 2000,80( 1 ) :42-56. 被引量:1
  • 4向日华,王润生.一种基于高斯混合模型的距离图像分割算法[J].软件学报,2003,14(7):1250-1257. 被引量:54
  • 5Neri A, Colonnese S, Russo G,et al. Automatic moving object and background separation [ J ]. Signal Processing, 1998,66(2) :219-232. 被引量:1
  • 6Moscheni M,Bhattacharjee S, Kunt M. Spatiotemporal segmentation based on region merging [ J]. IEEE Transaction on Pattern Analysis and Machine intelligence, 1998, 20 (9) :897-915. 被引量:1
  • 7KAMEDA Yonshinari, MINOH Michihiko. A human motion estimation method using 3-successive video frames [ C ]// Proceedings of International Conference on Virtual Systems and Multimedia, 1996 : 135-140. 被引量:1
  • 8Mae Y, Shirai Y, Miura J, et al. Object tracking in cluttered background based on optical flows and edges [ C ]//Proceedings of the 1996 International Conference on Pattern Recognition, 1996 : 196-200. 被引量:1

二级参考文献9

  • 1Jiang XY, Bunke H. Edge detection in range images based on scan line approximation. Computer Vision and Image Understanding,1999,73(2): 183~ 199. 被引量:1
  • 2Hoover A, Jean-Baptiste G, Jiang XY, Flynn PJ, Bunke H, Goldgof DB, Bowyer K, Eggert DW, Fitzgibbon A, Fisher RB. An experimental comparison of range image segmentation algorithms. IEEE Transactions on PAMI, 1996,18(7):673--689. 被引量:1
  • 3Hoffman R, Jain AK. Segment and classification of range images. IEEE Transactions on PAMI, 1996,9(5):608---620. 被引量:1
  • 4Bihnes JA. A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models. 1998. http://ssli.ee.washington.edu/people/bihnes/mypapers/em.ps.gz. 被引量:1
  • 5Redner RA, Walker HF. Mixture density, maximum likelihood and the EM algorithm. SIAM Review, 1984,26(2):195~239. 被引量:1
  • 6Hoover A, Powell MW. Range image segmentation comparison project. Department of Computer Science and Engineering,University of South Florida, 1996. http://marathon.csee.usf.edu/range/seg-comp/SegComp.html. 被引量:1
  • 7Raflery AE. Approximate Bayes factors and accounting for model uncertainty in generalizes linear model. Technical Report, 1993.http://www.stat.washington.edu/www/research/reports/1993/tr255 .ps. 被引量:1
  • 8Fraley C, Raftery AE. How many clusters? Which clustering method? Answers via model-based cluster analysis. Technical Report,1998. http://www.stat.washington.edu/www/research/reports/1998/tr329.ps. 被引量:1
  • 9Buhmann/M. Data clustering and learning. 2002. http://www-dbv.cs.uni-bonn.de,/pdf/buhmann.hobtann02.pdf. 被引量:1

共引文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部