期刊文献+

基础矩阵估计的聚类分析算法 被引量:9

Clustering Algorithm for the Fundamental Matrix Estimation
下载PDF
导出
摘要 提出一种基于聚类分析的Robust基础矩阵估计算法.该算法用高斯混合模型描述匹配点估计余差,采用改进的分裂合并EM算法对匹配点估计余差进行聚类分析,根据分类结果及平均余差最小规则筛选出正确匹配点类别,抛弃错误匹配点;最后,用M估计算法对筛选出的正确匹配点进行迭代求精.大量实验结果表明,文中算法比随机抽样一致性算法的估计精度高,且计算效率高. In the paper, Gaussian mixture model is used to describe the residuals of matches in the new robust algorithm for fundamental matrix estimation, and an improved split-merge EM (SMEM) algorithm is used to classify the matches, so that the false matches can be detected and rejected by the least mean absolute residual criteria. Finally, M-estimator is used to estimate the fundamental matrix. Our algorithm gives better result than random sample consensus (RANSAC) algorithm with higher efficiency in the large number experiments tested.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2005年第10期2251-2256,共6页 Journal of Computer-Aided Design & Computer Graphics
关键词 基础矩阵 高斯混合模型 鲁棒性 随机抽样一致性算法 EM算法 分裂合并EM算法 fundamental matrix Gaussian mixture model robust random sample consensus EM split-merge EM
  • 相关文献

参考文献13

  • 1陈泽志,吴成柯.一种高精度估计的基础矩阵的线性算法[J].软件学报,2002,13(4):840-845. 被引量:15
  • 2Hartley R. In defense of the eight-point algorithm [J]. IEEE Transactions on Pattern Analysis & Machine Intelligence,1997, 19(6): 580~593. 被引量:1
  • 3Zhang Zhengyou. Determining the epipolar geometry and its uncertainty: A review [J]. International Journal of Computer Vision, 1998, 27(2): 161~195. 被引量:1
  • 4Torr P H S, Murray D W. The development and comparison of robust methods for estimating the fundamental matrix [J].International Journal of Computer Vision, 1997, 24(3): 271~300. 被引量:1
  • 5Zhang Zhengyou. On the optimization criteria used in two-view motion analysis [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(7): 717~ 729. 被引量:1
  • 6Torr P H S, Zisserman A. MLESAC: A new robust estimator with application to estimating image geometry [J]. Computer Vision and Image Understanding, 2000, 78(1): 138~156. 被引量:1
  • 7Brandt Sami. Theorems and algorithms for multiple view geometry with applications to electron tomography [D]. Espoo:Helsinki University of Technology, 2002. 被引量:1
  • 8Brandt Sami. Maximum likelihood robust regression with known and unknown residual models [A]. In: Proceedings of the Statistical Methods in Video Processing Workshop, in Conjunction with ECCV 2002, Copenhagen, Denmark, 2002.97 ~ 102. 被引量:1
  • 9Brandt Sami, Heikkonen J. A new robust Bayesian method for the affine F-matrix estimation [A]. In: Proceedings of the Vision, Modeling, and Visualization 2000, Saarbrücken, 2000.39~ 46. 被引量:1
  • 10Ueda Naonori, Nakano Ryohei, et al. SMEM algorithm for mixture models [J]. Neural Computation, 2000, 12(9): 2109~2128. 被引量:1

二级参考文献22

  • 1Jiang XY, Bunke H. Edge detection in range images based on scan line approximation. Computer Vision and Image Understanding,1999,73(2): 183~ 199. 被引量:1
  • 2Hoover A, Jean-Baptiste G, Jiang XY, Flynn PJ, Bunke H, Goldgof DB, Bowyer K, Eggert DW, Fitzgibbon A, Fisher RB. An experimental comparison of range image segmentation algorithms. IEEE Transactions on PAMI, 1996,18(7):673--689. 被引量:1
  • 3Hoffman R, Jain AK. Segment and classification of range images. IEEE Transactions on PAMI, 1996,9(5):608---620. 被引量:1
  • 4Bihnes JA. A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models. 1998. http://ssli.ee.washington.edu/people/bihnes/mypapers/em.ps.gz. 被引量:1
  • 5Redner RA, Walker HF. Mixture density, maximum likelihood and the EM algorithm. SIAM Review, 1984,26(2):195~239. 被引量:1
  • 6Hoover A, Powell MW. Range image segmentation comparison project. Department of Computer Science and Engineering,University of South Florida, 1996. http://marathon.csee.usf.edu/range/seg-comp/SegComp.html. 被引量:1
  • 7Raflery AE. Approximate Bayes factors and accounting for model uncertainty in generalizes linear model. Technical Report, 1993.http://www.stat.washington.edu/www/research/reports/1993/tr255 .ps. 被引量:1
  • 8Fraley C, Raftery AE. How many clusters? Which clustering method? Answers via model-based cluster analysis. Technical Report,1998. http://www.stat.washington.edu/www/research/reports/1998/tr329.ps. 被引量:1
  • 9Buhmann/M. Data clustering and learning. 2002. http://www-dbv.cs.uni-bonn.de,/pdf/buhmann.hobtann02.pdf. 被引量:1
  • 10Faugeras,O.Three-Dimensional Computer Vision: A Geometric Viewpoint.Cambridge,MA: MIT Press,1993. 被引量:1

共引文献67

同被引文献76

引证文献9

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部