期刊文献+

基于在线分裂合并EM算法的高斯混合模型分类方法 被引量:4

Online split-and-merge EM training of GMM for pattern classification
下载PDF
导出
摘要 为了解决传统高斯混合模型中期望值EM处理必须具备足够数量的样本才能开始训练的问题,提出了一种新的高斯混合模型在线增量训练算法。本算法在Ueda等人提出的Split-and-Merge EM方法基础上对分裂合并准则的计算进行了改进,能够有效避免陷入局部极值并减少奇异值出现的情况;通过引入时间序列参数提出了增量EM训练方法,能够实现增量式的期望最大化训练,从而能够逐样本在线更新GMM模型参数。对合成数据和实际语音识别应用的实验结果表明,本算法具有较好的运算效率和分类准确性。 This paper presented a new online incremental training algorithm of Gaussian mixture model (GMM) ,which aimed to update GMM model parameters online incrementally instead of waiting for a block of data with the sufficient size to start training as in the traditional EM procedure. The proposed method was extended on split-and-merge EM procedure by Ueda with a new merge and split operation,so inherently it was also capable to escape from local maxima and reduce the chances of singularities. By introducing the time sequence to all the model parameters,also proposed a new online incremental EM training algorithm to update GMM model parameters sample by sample. Experiments on the synthetic data and speech processing task show the advantages and efficiency of the proposed method.
作者 张永鑫 冉鑫
出处 《计算机应用研究》 CSCD 北大核心 2010年第8期2906-2908,共3页 Application Research of Computers
基金 国家"863"计划资助项目(2007AA11Z249) 上海市科委自然科学基金资助项目(08ZR1409300) 上海市重点学科建设项目(S30602)
关键词 高斯混合模型 在线训练 分裂融合算法 模式分类 Gaussian mixture model(GMM) online training split-and-merge pattern classification
  • 相关文献

参考文献11

  • 1金炎芳,张定华,赵歆波,陈志强,张东平.基于混合高斯模型MRF场的CT图像分割[J].计算机应用研究,2007,24(6):176-177. 被引量:5
  • 2KENNY P,BOULIANNE G,OUELLET P,et al.Speaker and session variability in GMM-based speaker verification[J].IEEE Trans on Audio,Speech,and Language Processing,2007,15(4):1448-1460. 被引量:1
  • 3LEVY C,LINARES G,BONASTRE J E.GMM-based acoustic modeling for embedded speech recognition[C] //Proc of ICSLP.2006:1726-1729. 被引量:1
  • 4ZHANG Y,MICHAEL S.Effective online unsupervised adaptation of Gaussian mixture models and its application to speech classification[J].Pattern Recognition Letters,2008,29(6):735-744. 被引量:1
  • 5DEMPSTER A P,LAIRD N M,RUBIN D B.Maximum likelihood from incomplete data via the EM algorithm[J].Journal of Royal Statistical Society B,1977,39:1-38. 被引量:1
  • 6UEDA N,NAKANO R,GHAHRAMANI Z,et al.Split and merge EM algorithm for improving Gaussian mixture density estimates[J].Journal of VLSI Signal Processing Systems for Signal,Image,and Video Technology,2000,26(1-2):133-140. 被引量:1
  • 7NEAL R,HINTON G.A view of the EM algorithm that justifies incremental,sparse,and other variants[C] //JORDAN M.Learning in Graphical Models.The Netherlands:Kluwer Academic Publishers,1998:355-371. 被引量:1
  • 8EVERITT B S,HAND D J.Finite mixture distribution[M].New York:Chapman and Hall,1981. 被引量:1
  • 9ZHANG Y,SCORDILIS M.Optimization of GMM training for speaker verification[C] //Proc of ODYS 2004.2004:231-236. 被引量:1
  • 10DIGALAKIS V V.Online adaptation of hidden Markov models using incremental estimation algorithms[J].IEEE Trans on SAP,1999,7:253-261. 被引量:1

二级参考文献6

共引文献4

同被引文献29

  • 1王平波,蔡志明,刘旺锁.混合高斯概率密度模型参数的期望最大化估计[J].声学技术,2007,26(3):498-502. 被引量:21
  • 2Acharya U R, Sree S V.Application of recurrence quanti- fication analysis for the automated identification of epi- leptic EEG signals[J].Intemational Journal of Neural Sys- tems(IJNS) ,2011,21 (3) : 199-211. 被引量:1
  • 3Fabian T.Mixture of Gaussians exploiting histograms of oriented gradients for background subtraction[C]//LNCS 6454: ISVC' 10 Proceedings of the 6th International Con- ference on Advances in Visual Computing, 2010 , part II: 716-725. 被引量:1
  • 4Zhang Y,Michael S.Effective online unsupervised adap- tation of Gaussian Mixture Models and its application to speech classification[J].Pattern Recognition Letters, 2008,29 (6) : 735-744. 被引量:1
  • 5Dempster A P, Laird N M, Rubin D B.Maximum likeli- hood from incomplete data via the EM algorithm[J]. Journal of Royal Statistical Society B, 1977,39:1-38. 被引量:1
  • 6Pernkopf F, Bouchaffra D.Genetic-based EM algorithm for learning Gaussian mixture models[J].IEEE Trans on Patt Anal Mach Intel,2005,27(8) : 1344-1348. 被引量:1
  • 7Ueda N, Nakano R, Ghahramani Y, et al.SMEM algo- rithm for mixture models[J].Neural Computer, 2000, 12 (10) :2109-2128. 被引量:1
  • 8Zhang Z, Chen C, Sun J, et al.EM algorithms for Gaussian mixtures with split-and-merge operation[J].Patt Recog- nit, 2003,36 : 1973-1983. 被引量:1
  • 9Figueiredo A, Jain A.Unsupervised learning of finite mixture models[J].IEEE Trans on Patt Anal Mach In- tell, 2002,24 (3) : 381-396. 被引量:1
  • 10Ketchantang W, Derrode S,Martin L, et al.Pearson- based mixture model for color object tracking[J]. Machine Visual Application, 2008,19 (5) : 457-466. 被引量:1

引证文献4

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部