摘要
A novel Direction-Of-Arrival (DOA) estimation method is proposed in the presence of mutual coupling using the joint sparse recovery. In the proposed method, the eigenvector corresponding to the maximum eigenvalue of covariance matrix of array measurement is viewed as the signal to be represented. By exploiting the geometrical property in steering vectors and the symmetric Toeplitz structure of Mutual Coupling Matrix (MCM), the redundant dictionaries containing the DOA information are constructed. Consequently, the optimization model based on joint sparse recovery is built and then is solved through Second Order Cone Program (SOCP) and Interior Point Method (IPM). The DOA estimates are gotten according to the positions of nonzeros elements. At last, computer simulations demonstrate the excellent performance of the proposed method.
A novel Direction-Of-Arrival (DOA) estimation method is proposed in the presence of mutual coupling using the joint sparse recovery. In the proposed method, the eigenvector corresponding to the maximum eigenvalue of covariance matrix of array measurement is viewed as the signal to be represented. By exploiting the geometrical property in steering vectors and the symmetric Toeplitz structure of Mutual Coupling Matrix (MCM), the redundant dictionaries containing the DOA in- formation are constructed. Consequently, the optimization model based on joint sparse recovery is built and then is solved through Second Order Cone Program (SOCP) and Interior Point Method (IPM). The DOA estimates are gotten according to the positions of nonzeros elements. At last, computer simulations demonstrate the excellent performance of the proposed method.
基金
Supported by the Innovation Foundation for Outstanding Postgraduates in the Electronic Engineering Institute of PLA (No. 2009YB005)