期刊文献+

含钴介孔分子筛催化热解乙醇制备纳米碳管

Preparation of carbon nanotubes by ethanol pyrolysis using Co-containing mesoporous molecular sieve as catalyst
下载PDF
导出
摘要 以CTAB为模板剂,硅酸钠、氯化钴为原料,通过水热法合成含钴介孔分子筛(Co-MCM-41)。以所合成的Co-MCM-41做催化剂,采用化学气相沉积(CVD)法催化热解乙醇制备纳米碳管。通过XRD、FT-IR、TEM、N2吸附-脱附和Raman光谱等分析手段对所合成的介孔分子筛和纳米碳管进行了表征。结果表明:合成的Co-MCM-41样品具有MCM-41的介孔结构,比表面积较大且介孔有序性较好。以所合成的含钴介孔分子筛催化热解乙醇制备出管径均匀、管壁较厚、顶端开口的多壁纳米碳管。 Co-MCM-41mesoporous molecular sieves were synthesized by hydrothermal method using eetyltrimethyl ammonium bromide as template and sodium silicate and cobalt chloride as raw materials, respectively. Carbon nanotubes(CNTs) were synthesized by chemical vapor deposition(CVD) method using the Co-MCM-41 as a catalytic template by the pyrolysis of ethanol at atmospheric pressure. The physicochemical properties of the obtained samples were characterized by X-ray diffraction(XRD) ,Fourier transform infrared spectroscopy ( FT-IR), transmission electron microscopy ( TEM ), N2 physical adsorption and Raman spectroscopy, respec- tively. The results show that the Co-MCM-41 samples possess a typical mesoporous framework of MCM-41. These mesoporous mate- rials have high specific surface area and good mesoporous ordering. The open-ended and high purification CNTs with uniform diame- ter and thicker wall were successfully synthesized.
出处 《化学研究与应用》 CAS CSCD 北大核心 2012年第9期1433-1438,共6页 Chemical Research and Application
基金 黑龙江省教育厅科学技术研究项目(12511630)资助
关键词 介孔分子筛 水热合成 化学气相沉积 乙醇 纳米碳管 mesoporous molecular sieve hydrothermal synthesis chemical vapor deposition ethanol carbon nanotubes
  • 相关文献

参考文献13

  • 1Iijima S. Helical microtubules of graphitic carbon[J]. Na- ture,1991,354(6314) :56-58. 被引量:1
  • 2Thess A, Nikolaev P, Dai H J, et al. Crystalline ropes of metallic carbon nanotubes [ J ]. Sc/ence, 1996,273 (5274) : 483-487. 被引量:1
  • 3Berber S, Kyum K Y, Tomanek D. Unusually high thermal conductivity of carbon nanotubes [ J ]. Phys Rev Lett , 2000,84(20) :4613-4616. 被引量:1
  • 4王红娟,彭峰,黎志欣,朱汉才,邝志敏.CVD法制备碳纳米管的影响因素研究[J].石油化工,2004,33(z1):114-116. 被引量:2
  • 5Wang Z, Yu C H, Ba D C, et al. Influence of the gas com- position on the synthesis of boron-doped carbon nanotubes by ECR-CVD[ J]. Vacuum,2007,81 (5):579-582. 被引量:1
  • 6Li T X, Kuwana K, Saito K, et al. Temperature and carbon source effects on methane-air flame synthesis of CNTs [ J ]. Proceedings of the Combustion Institute, 2009, 32 (2) : 1855-1861. 被引量:1
  • 7Che G L. Chemical vapor deposition based synthesis of carbon nanotubes and nanofibres using a template method [ J]. Chem Mater, 1998,10( 1 ) :260-267. 被引量:1
  • 8Hernadi K, Fonseca A, Nagy J B. Fe-catalyzed carbonnanotube formation [ J ]. Carbon, 1996, 34 ( 10 ) : 1249- 1257. 被引量:1
  • 9Lira S Y,Ciuparu D,Chen Y,et al. Effect of Co-MCM-41 conversion to cobalt silicate for catalytic growth of single wall carbon nanotubes[ J]. Phys Chem B,2004,108(52) : 20095-20101. 被引量:1
  • 10Amama P B. ,Lira S Y,Ciupard D,et al. Synthesis,char- acterization, and stability of Fc-MCM--41 for Production of carbon nanotubes by acetylene pyrolysis [ J ]. Phys Chem B, 2005,109 ( 7 ) : 2645-2656. 被引量:1

二级参考文献17

  • 1[1]Postma H W C, Teepen T, Yao Z,et al. [ J]. Science,2001,293:76 ~ 79. 被引量:1
  • 2[2]Tang Z K, Zhang L Y,Wang N,et al. [J]. Science,2001,292(5526) :2462 ~ 2465. 被引量:1
  • 3[4]Soneda Y,Duclaux L,Beguin F. [J]. Carbon,2002,40(6) :965~ 969. 被引量:1
  • 4[5]Zhang R Y , Amlani I , Baker J , et al. [ J ] . Nano Lett ,2003 ,3 ( 6 ) :731 ~ 735. 被引量:1
  • 5[6]Li Q W,Yan H,Zhang J,et al. [J]. Carbon,2004,42(4) :829 ~830. 被引量:1
  • 6WANGYu-fang CAOXue-wei LANGuo-xiang(王玉芳 曹学伟 蓝国祥).光谱学与光谱分析,2000,20(2):180-180. 被引量:3
  • 7ZHANGHong-rui DINGPei GUOXin-yong etal(张红瑞 丁佩 郭新勇 ).光谱学与光谱分析,2004,24(5):569-569. 被引量:3
  • 8Iijima S. Nature, 1991, 354: 56. 被引量:1
  • 9Ebbesen T W, Ajayan P M. Nature, 1992, 358: 220. 被引量:1
  • 10Collins P G, Zettl A. Appl. Phys. Lett., 1996, 69: 1969. 被引量:1

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部