期刊文献+

环氧酮肽蛋白酶体抑制剂的构效关系及基于分子相似性的分子设计 被引量:2

Structure-activity relationships and molecular design of epoxyketone peptide proteasome inhibitors
下载PDF
导出
摘要 针对56个环氧酮肽衍生物,分别采用比较分子场分析(comparative molecular field analysis,CoMFA)、比较分子相似性形状指数分析(comparative molecular similarity indices analysis,CoMSIA)、Topomer CoMFA、Holo-gram QSAR(HQSAR)以及基于一维和二维描述符的支持向量机(support vector machine,SVM)方法进行了细致的构效关系研究。研究显示:通过引入一维和二维描述符的SVM建模方法,避免了柔性分子在三维构效关系研究中的构象选择和叠合难题,亦可有效避免过拟合现象的发生。所建最优SVM模型的决定系数R2、均方根误差(RMS)、交互验证系数Q2和外部预测R2pred分别为0.681,0.436,0.572和0.641。分析结果显示:电性、拓扑特征、疏水性和分子体积是影响环氧酮肽蛋白酶体抑制活性的主要因素。在此基础上,以活性最高样本分子(CID:42638286的)为模板,基于相似性评价方法对其侧链进行设计,结合Lipinski"5规则"类药性筛选,共得到12个新颖目标分子,且预测活性均达到纳摩尔水平。 As oral proteasome inhibitors,epoxyketone peptide inhibitors showed strong inhibitory activities and specificities against proteasome, and had become one of the hotspots in anti-cancer drug research recently. In this paper, the comparative molecular field analysis ( CoMFA ), comparative molecular similarity indices analysis ( CoMSIA ), topomer CoMFA, the hologram QSAR ( HQSAR ) and SVM-based 2-D QSAR method were used to explore the relationships between structures and activities of 56 epoxyketone pep- tide inhibitors. The results showed that the best model was derived from SVM-based 2-D QSAR method, which avoided conformer a- lignments and overfitting problems. The coefficients of determination( R2) , root mean squares( RMS ), cross-validated determination coefficients(Q2) and determination coefficients of external prediction (R2pred )of the best SVM model are 0. 681,0. 436,0. 572, and 0. 641, respectively. The results showed that the electrical properties, topological properties, molecular volumes and hydrophobicities were the main factors affecting activities of epoxyketone peptide inhibitors. Furthermore ,the side chains of epoxyketone peptide were optimized and evaluated by molecular similarities to a template( CID:42638286)with the highest activity. Screened by the Lipinski "s rule of five, 12 novel molecules were obtained, and the activities of which reached nanomolar levels.
出处 《化学研究与应用》 CAS CSCD 北大核心 2012年第9期1376-1388,共13页 Chemical Research and Application
基金 重庆市自然科学基金重点项目(CSTC,2009BA5068)资助 中央高校基本科研业务费科研专项项目(CDJXS,11231177)资助
关键词 蛋白酶体抑制剂 环氧酮肽 SVM HQSAR 分子设计 proteasome inhibitors epoxyketone peptide SVM HQSAR molecular design
  • 相关文献

参考文献29

  • 1Garcia-Echeverria C. Recent advances in the identification and development of 20S proteasome inhibitors [ J ]. Mini- Rev Med Chem,2002,2( 3 ) :247-259. 被引量:1
  • 2Groll M, Huber R, Moroder L. The persisting challenge ofselective and specific proteasome inhibition [ J ]. J Pept Sci,2009,15(2) :58-66. 被引量:1
  • 3MyungJ, Kim K B, Crews C M. The ubiquitin-proteasome pathway and proteasome inhibitors[ J]. Medicinal ResearchReviews ,2001.21 (4) :245-273. 被引量:1
  • 4deBettignies G, Coux O. Proteasome inhibitors: dozens of molecules and still counting [ J ]. Bioehimie, 2010, 92 ( 11 ) : 1530-1545. 被引量:1
  • 5Hines J, GroU M, Fahnestoek M, et al. Preteasome inhibi- tion by fellutamide B induces nerve growth factor synthesis [J]. Chem B/o/,2008,15(5) :501-512. 被引量:1
  • 6Lin G,Li D Y,Tamutenda C,et al. Fellutamide B is a po- tent inhibitor of the Mycobacterium tuberculosis protea- some[J]. Arch Biochem Biophys,2010,501 (2):214-220. 被引量:1
  • 7Lawrence H R,Aslamuzzaman K,Yunting L,et al. Synthe- sis and biological evaluation of naphthoquinone analogs as a novel class of proteasome inhibitors [ J ]. Bioorg Med Chem, 20i0,18 (15) :5576-5592. 被引量:1
  • 8Momose I, Umezawa Y, Hirosawa S, et al. Structure-based design of derivatives of tyropeptin A as the potent and se- lective inhibitors of mammalian 20S proteasome [ J ]. Bioor g Med Chem Lett ,2005 ,15 ( 7 ) :1867-1871. 被引量:1
  • 9Chadi N, Dana V, Neil D, et al. Bortezomib (Velcade), rit- uximab, cyclophosphamide, and dexamethasone combina- tion regimen is active as front-line therapy of low-grade non-hodgkin lymphoma[ J]. Clin Lymphoma Myeloma and Leuk,2011,12(l )26-31. 被引量:1
  • 10Mesa R A, Verstovsek S, Rivera C, et al. Bortezomib ther- apy in myelofibrosis:a phase II clinical trial[ J]. Leuke- mia, 2008.22 (8) : 1636-1638. 被引量:1

同被引文献16

  • 1Sowa M E, He W, Slep K C, et al. Prediction and confirma- tion of a site critical for effector regulation of RGS domain activity[ J]. Nat Struct Biol,2001,8 (3) :234-237. 被引量:1
  • 2Tunebag N, Gursoy A, Nussinov R, et al. Predicting pro- rein-protein interactions on a proteome scale by matching evolutionary and structural similarities at interfaces using PRISM[J]. Nat Protoc ,2011,6 ( 9 ) :1341-1354. 被引量:1
  • 3Liu X Y, Liu B, Huang Z M, et al. SPPS : a sequence-based method for predicting probability of protein-protein interac- tion partners[J]. Plos One,2012,7( 1 ) :e30938. 被引量:1
  • 4Zahiri J, Yaghoubi O, Noori M M, et al. PPIevo : protein- protein interaction prediction from PSSM based evolution- ary information[ J ]. Genom/cs ,2013,102:237-242. 被引量:1
  • 5]Guo Y Z, Yu L Z, Wen Z N, et al. Using support vector machine combined with auto covariance to predict protein- protein interactions from protein sequences [ J ]. Nucleic Acids Res ,2008,36 (9) :3025-3030. 被引量:1
  • 6]Li Z C, Zhou X, Dai Z, et al. Classification of G-protein coupled receptors based on support vector machine with maximum relevant minimum redundancy and genetic algo- rithm[J].BMC Bioinformatics, 11:325. 被引量:1
  • 7Dubchak I, Muchnik I. Holbrook S R, et al. Prediction of protein folding class using global description of amino acid sequence[ J ]. Proc Natl Acad Sci USA, 1995,92 : 8700- 8704. 被引量:1
  • 8Han L Y, Cai C Z, Ji Z L, et al. Predicting functional fami- ly of novel enzyme irrespective of sequence similarity[ J]. Nucleic Acids Res ,2004,32:6437-64.44. 被引量:1
  • 9Peng H, Long F, Ding C. Feature selection based on mutu- al information : criteria of max-dependency, max-relevance, and rain-redundancy [ J ]. IEEE Trans Pattern Anal Mach lntell,2005,27 ( 8 ) : 1226-1238. 被引量:1
  • 10Chang C H,Lin C J. LIBSVM:a library for support vector machines. Software available at http://www, csie. ntu. edu. tw/-cjlin/libsvm. 被引量:1

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部