期刊文献+

最优特征子集预测蛋白质与蛋白质的相互作用 被引量:1

Predicting protein-protein interactions based on the optimized feature subset
下载PDF
导出
摘要 蛋白质与蛋白质相互作用的识别有助于研究蛋白质功能和发现潜在的药物靶标。本研究采用氨基酸组成、二肽组成、三联子组成、组成、转变、分布和自相关特征对蛋白质与蛋白质相互作用对进行表征。基于最小冗余最大相关方法选择最优特征子集,结合支持向量机对酵母蛋白质与蛋白质相互作用进行了预测研究。通过采用最优特征子集,训练集和测试集的预测精度分别比二肽组成的提高了4%和2%,表明了当前方法的有效性。 Identification of protein-protein interactions can provide useful information to elucidate protein functions and discover drug target. In this study,amino acid composition,dipeptide composition,conjoint triad,composition,transition,distribution and nor-malized Moreau-Broto autocorrelation features are used to characterize protein-protein interactions. Minimum redundancy maximum relevance is employed to select the optimized feature subset,and support vector machine is adopted to construct model and predict protein-protein interactions of saccharomyces. Based on the optimized subset,accuracies of training set and test set are about 5%and 2%higher than those of dipeptide composition,showing the effectiveness of the current method.
出处 《化学研究与应用》 CAS CSCD 北大核心 2014年第9期1483-1486,共4页 Chemical Research and Application
基金 国家自然科学基金项目(81171666 21205019)资助 广东省自然科学基金项目(S2013010012135 10151027501000070)资助 国家教育部博士点基金项目(20110171110014)资助
关键词 蛋白质相互作用 最小冗余最大相关 支持向量机 protein-protein interactions minimum redundancy maximum relevance support vector machine
  • 相关文献

参考文献12

  • 1Sowa M E, He W, Slep K C, et al. Prediction and confirma- tion of a site critical for effector regulation of RGS domain activity[ J]. Nat Struct Biol,2001,8 (3) :234-237. 被引量:1
  • 2Tunebag N, Gursoy A, Nussinov R, et al. Predicting pro- rein-protein interactions on a proteome scale by matching evolutionary and structural similarities at interfaces using PRISM[J]. Nat Protoc ,2011,6 ( 9 ) :1341-1354. 被引量:1
  • 3Liu X Y, Liu B, Huang Z M, et al. SPPS : a sequence-based method for predicting probability of protein-protein interac- tion partners[J]. Plos One,2012,7( 1 ) :e30938. 被引量:1
  • 4Zahiri J, Yaghoubi O, Noori M M, et al. PPIevo : protein- protein interaction prediction from PSSM based evolution- ary information[ J ]. Genom/cs ,2013,102:237-242. 被引量:1
  • 5]Guo Y Z, Yu L Z, Wen Z N, et al. Using support vector machine combined with auto covariance to predict protein- protein interactions from protein sequences [ J ]. Nucleic Acids Res ,2008,36 (9) :3025-3030. 被引量:1
  • 6]Li Z C, Zhou X, Dai Z, et al. Classification of G-protein coupled receptors based on support vector machine with maximum relevant minimum redundancy and genetic algo- rithm[J].BMC Bioinformatics, 11:325. 被引量:1
  • 7Dubchak I, Muchnik I. Holbrook S R, et al. Prediction of protein folding class using global description of amino acid sequence[ J ]. Proc Natl Acad Sci USA, 1995,92 : 8700- 8704. 被引量:1
  • 8Han L Y, Cai C Z, Ji Z L, et al. Predicting functional fami- ly of novel enzyme irrespective of sequence similarity[ J]. Nucleic Acids Res ,2004,32:6437-64.44. 被引量:1
  • 9Peng H, Long F, Ding C. Feature selection based on mutu- al information : criteria of max-dependency, max-relevance, and rain-redundancy [ J ]. IEEE Trans Pattern Anal Mach lntell,2005,27 ( 8 ) : 1226-1238. 被引量:1
  • 10Chang C H,Lin C J. LIBSVM:a library for support vector machines. Software available at http://www, csie. ntu. edu. tw/-cjlin/libsvm. 被引量:1

二级参考文献47

  • 1Garcia-Echeverria C. Recent advances in the identification and development of 20S proteasome inhibitors [ J ]. Mini- Rev Med Chem,2002,2( 3 ) :247-259. 被引量:1
  • 2Groll M, Huber R, Moroder L. The persisting challenge ofselective and specific proteasome inhibition [ J ]. J Pept Sci,2009,15(2) :58-66. 被引量:1
  • 3MyungJ, Kim K B, Crews C M. The ubiquitin-proteasome pathway and proteasome inhibitors[ J]. Medicinal ResearchReviews ,2001.21 (4) :245-273. 被引量:1
  • 4deBettignies G, Coux O. Proteasome inhibitors: dozens of molecules and still counting [ J ]. Bioehimie, 2010, 92 ( 11 ) : 1530-1545. 被引量:1
  • 5Hines J, GroU M, Fahnestoek M, et al. Preteasome inhibi- tion by fellutamide B induces nerve growth factor synthesis [J]. Chem B/o/,2008,15(5) :501-512. 被引量:1
  • 6Lin G,Li D Y,Tamutenda C,et al. Fellutamide B is a po- tent inhibitor of the Mycobacterium tuberculosis protea- some[J]. Arch Biochem Biophys,2010,501 (2):214-220. 被引量:1
  • 7Lawrence H R,Aslamuzzaman K,Yunting L,et al. Synthe- sis and biological evaluation of naphthoquinone analogs as a novel class of proteasome inhibitors [ J ]. Bioorg Med Chem, 20i0,18 (15) :5576-5592. 被引量:1
  • 8Momose I, Umezawa Y, Hirosawa S, et al. Structure-based design of derivatives of tyropeptin A as the potent and se- lective inhibitors of mammalian 20S proteasome [ J ]. Bioor g Med Chem Lett ,2005 ,15 ( 7 ) :1867-1871. 被引量:1
  • 9Chadi N, Dana V, Neil D, et al. Bortezomib (Velcade), rit- uximab, cyclophosphamide, and dexamethasone combina- tion regimen is active as front-line therapy of low-grade non-hodgkin lymphoma[ J]. Clin Lymphoma Myeloma and Leuk,2011,12(l )26-31. 被引量:1
  • 10Mesa R A, Verstovsek S, Rivera C, et al. Bortezomib ther- apy in myelofibrosis:a phase II clinical trial[ J]. Leuke- mia, 2008.22 (8) : 1636-1638. 被引量:1

共引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部