期刊文献+

矩阵非负分裂下SOR迭代法收敛性 被引量:1

The convergence of the SOR iterative method in matrix non-negative splitting
下载PDF
导出
摘要 目的讨论预条件后用迭代法求解的线性方程组Ax=b。方法利用预条件后系数矩阵非负分裂形式的多样性,给出一种含参数形式的非负分裂。结果与结论证明这种分裂形式可以加速SOR迭代法的收敛性,并与一般的预条件后SOR迭代法的收敛性进行比较,说明这些分裂形式更好。 Aim To discuss the preconditioned linear system Ax=b which is solved with iterative method.Methods By using the diversity of nonnegative matrix splitting,a kind of nonnegative splitting with parameter is given.Results and conclusion It is proved that the aforesaid splitting form can accelerate the convergence of SOR iterative method,and the aforesaid form is better than the general preconditioned SOR iterative method.
作者 雷刚
出处 《宝鸡文理学院学报(自然科学版)》 CAS 2012年第2期13-15,20,共4页 Journal of Baoji University of Arts and Sciences(Natural Science Edition)
基金 国家自然科学基金资助项目(10071048) 宝鸡文理学院重点项目(ZK11015)
关键词 预处理 收敛性 SOR迭代法 M-矩阵 precondition; convergence; the SOR iteration method; M-matrix
  • 相关文献

参考文献6

  • 1Hiroshi Niki, Kyouji Harada, Munenori Morimoto, et al. The survey of preconditioners used for accelerating the rate of convergence in the Gauss-Seidel method [J]. Journal of Computational and Applied Mathematics, 2004,165 (1) : 587-600. 被引量:1
  • 2WANG Xue-zhong, HUANG Ting-zhu, FU Ying-ding. Comparison results on preconditioned SOR-type iterative method for Z-matrices linear systems[J]. Journal of Computational and Applied Mathematics, 2007, 206(2):726-732. 被引量:1
  • 3Jae Heon Yun. A note on the modified SOR method for Z-matrices[J]. Applied Mathematics and Computation, 2007,194(2) : 572-576. 被引量:1
  • 4Richard S Varga. Matrix Iterative Analysis[M]. Heidelberg; Spring-Verlag, 2000. 被引量:1
  • 5雷刚.两类预条件后迭代法收敛性的讨论[J].东北师大学报(自然科学版),2009,41(3):21-25. 被引量:5
  • 6雷刚.预条件(I+S)后改进矩阵分裂的SOR迭代法收敛性分析[J].宝鸡文理学院学报(自然科学版),2011,31(3):13-17. 被引量:3

二级参考文献13

  • 1李耀堂,王转德.线性方程组预条件AOR迭代法注记(英文)[J].工程数学学报,2004,21(5):685-690. 被引量:1
  • 2Ananda D Gunawardena, S K Jain, Larry Snyder. Modified iterative method for consistent linear systems[J]. Linear Algebra and its Applications, 1991,154-156: 123-143. 被引量:1
  • 3LIU Qing-bing, CHEN Guo-ling, CAI Jing. Convergence analysis of the preconditioned Gauss-Seidel method for H-matrices[J]. Computers & Mathematics with Applications, 2008, 56(8): 2048-2053. 被引量:1
  • 4Jae Heon Yun. Convergence of SSOR multisplitting method for an H-matrix [J]. Journal of Computational and Applied Mathematics, 2008, 217(1): 252-258. 被引量:1
  • 5Jae Heon Yun. A note on the modified SOR method for Z-matriees[J]. Applied Mathematics and Computation, 2007, 194: 572-576. 被引量:1
  • 6DAVID M Yong. Iterative solution of large linear systems[M]. New York:Academic Press, 1971. 被引量:1
  • 7Richard S Varga. Matrix iterative analysis[M]. Heidelberg:Spring-Verlag, 2000. 被引量:1
  • 8WANG Zhuan-de, HUANG Ting-zhu. Comparison result between Jacobi and other iterative methods[J]. Journal of Computational and Applied Mathematics, 2004, 169(1) : 45-51. 被引量:1
  • 9LI Wen. Comparison results for solving preconditioned linear systems[J]. Journal of Computational and Applied Mathematics, 2005,176(2) : 319-329. 被引量:1
  • 10WANG Xue-zhong, HUANG Ting-zhu, FU Ying-ding. Comparison results on preconditioned SOR-type iterative method for Z-matrices linear systems[J]. Journal of Computational and Applied Mathematics, 2007, 206 (2): 726-732. 被引量:1

共引文献6

同被引文献4

  • 1HIROSHI Niki, KYOUJI Harada, MUNENORI Morimoto, etc. The survey of preconditioners used for accelerating the rate of convergence in the Gauss-Seidel method [J]. Journal of Computational and Applied Mathematics,2004,165:587-600. 被引量:1
  • 2WANG Xuezhong, HUANG Tingzhu,FU Yingding. Comparison results on preconditioned SOR-type iterative method for Z-matrices linear systems[J]. Journal of Computational and Applied Mathematics,2007,206:726-732. 被引量:1
  • 3YUN Jae Heon. A note on the modified SOR method for Z-matrices[J]. Applied Mathematics and Computation,2007, 194..572-576. 被引量:1
  • 4VARGA Richard S. Matrix iterative analysis[M]. Heidelberg: Spring-Verlag, 2000. 被引量:1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部