期刊文献+

预条件(I+S)后改进矩阵分裂的SOR迭代法收敛性分析 被引量:3

The convergence analysis of SOR iterative method in preconditioned(I+S) based on improved matrix splitting modus
下载PDF
导出
摘要 目的在预条件后运用SOR迭代法求解大型线性方程组Ax=b,以加快迭代法的收敛性。方法结合矩阵分裂理论及比较定理,引入参数α,给出预条件后一种改进的矩阵分裂形式,使矩阵分裂更加一般化。结果与结论说明这种方法不仅能加速SOR迭代法的收敛性,而且优于常见的SOR方法,并且给出参数的最优选取,为算法设计提供帮助。 Aim To accelerate the convergence with the preconditioned SOR iterative method for solving the large linear system Ax=b.Methods In combination with matrix splitting theory and comparison theorem,matrix splitting becomes more generalized by giving parameter α and an improved SOR iterative method for solving the large linear system after being preconditioned.Results and Conclusion The improved method can not only accelerate the convergence effect of the SOR iterative method,but also generaly SOR iterative,then give the method for optimal selection parameters,thus helping design algorithm.
作者 雷刚
出处 《宝鸡文理学院学报(自然科学版)》 CAS 2011年第3期13-17,21,共6页 Journal of Baoji University of Arts and Sciences(Natural Science Edition)
基金 国家自然科学基金资助项目(10071048) 宝鸡文理学院重点项目基金资助(zk1031)
关键词 预条件 收敛性 SOR迭代法 谱半径 precondition convergence the SOR iteration method spectral radius
  • 相关文献

参考文献12

  • 1Ananda D Gunawardena, S K Jain, Larry Snyder. Modified iterative method for consistent linear systems[J]. Linear Algebra and its Applications, 1991,154-156: 123-143. 被引量:1
  • 2LIU Qing-bing, CHEN Guo-ling, CAI Jing. Convergence analysis of the preconditioned Gauss-Seidel method for H-matrices[J]. Computers & Mathematics with Applications, 2008, 56(8): 2048-2053. 被引量:1
  • 3Jae Heon Yun. Convergence of SSOR multisplitting method for an H-matrix [J]. Journal of Computational and Applied Mathematics, 2008, 217(1): 252-258. 被引量:1
  • 4Jae Heon Yun. A note on the modified SOR method for Z-matriees[J]. Applied Mathematics and Computation, 2007, 194: 572-576. 被引量:1
  • 5DAVID M Yong. Iterative solution of large linear systems[M]. New York:Academic Press, 1971. 被引量:1
  • 6Richard S Varga. Matrix iterative analysis[M]. Heidelberg:Spring-Verlag, 2000. 被引量:1
  • 7张谋成,黎稳著..非负矩阵论[M].广州:广东高等教育出版社,1995:411.
  • 8WANG Zhuan-de, HUANG Ting-zhu. Comparison result between Jacobi and other iterative methods[J]. Journal of Computational and Applied Mathematics, 2004, 169(1) : 45-51. 被引量:1
  • 9LI Wen. Comparison results for solving preconditioned linear systems[J]. Journal of Computational and Applied Mathematics, 2005,176(2) : 319-329. 被引量:1
  • 10WANG Xue-zhong, HUANG Ting-zhu, FU Ying-ding. Comparison results on preconditioned SOR-type iterative method for Z-matrices linear systems[J]. Journal of Computational and Applied Mathematics, 2007, 206 (2): 726-732. 被引量:1

二级参考文献2

共引文献4

同被引文献18

  • 1WAMG Xuezhong, HUANG Tingzhu, FU Yingding. Comparison results on preconditioned SOR-type iterative method for Z-matrices linear systems[J]. Journal of Computational and Applied Mathematics, 2007,206 : 726-732. 被引量:1
  • 2HUNAG Tingzhu, CHENG Guanghui,CHENG Xiaoyu. Modified SOR-type iterative method for Z-matrices[J]. Ap- plied Mathematics and Computation,2006,175:258-268. 被引量:1
  • 3YUN Jaeheon. A note on the modified SOR method for Z-matrices[J]. Applied Mathematics and Computation, 2007, 194:572-576. 被引量:1
  • 4Hiroshi Niki, Kyouji Harada, Munenori Morimoto, et al. The survey of preconditioners used for accelerating the rate of convergence in the Gauss-Seidel method [J]. Journal of Computational and Applied Mathematics, 2004,165 (1) : 587-600. 被引量:1
  • 5WANG Xue-zhong, HUANG Ting-zhu, FU Ying-ding. Comparison results on preconditioned SOR-type iterative method for Z-matrices linear systems[J]. Journal of Computational and Applied Mathematics, 2007, 206(2):726-732. 被引量:1
  • 6Jae Heon Yun. A note on the modified SOR method for Z-matrices[J]. Applied Mathematics and Computation, 2007,194(2) : 572-576. 被引量:1
  • 7Richard S Varga. Matrix Iterative Analysis[M]. Heidelberg; Spring-Verlag, 2000. 被引量:1
  • 8Ting Zhu Huang, Guang Hui Cheng, Xiao-Yu Cheng. Modified SOR-type iterative method for Z-matrices[J]. Applied Mathematics and Computation, 2006, 175 (2): 258-268. 被引量:1
  • 9Hiroshi Niki, Kyouji Harada, Munenori Morimoto. The survey of preconditioners used for accelerating the rate of convergence in the gauss seidel method[J]. Journal of Computational and Applied Mathematics, 2004, 165 ( 3 ): 587-600. 被引量:1
  • 10Jae Heon Yun. A note on the modified SOR method for z- matrices[J]. Applied Mathematics and Computation, ~007,194(3) :572-576. 被引量:1

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部