期刊文献+

改进粒子群算法求解GPS短基线整周模糊度的研究 被引量:6

RESEARCH ON AMBIGUITY RESOLUTION OF GPS SHORT BASELINE BY USING IMPROVED PARTICLE SWARM OPTIMIZATION
下载PDF
导出
摘要 针对降相关处理的模糊度浮点解及其方差阵,提出了一种基于改进粒子群算法(IPSO)的模糊度搜索新方法。IPSO以实数编码取整的方式对双差模糊度进行编码,并通过自适应计算惯性权重和粒子变异,改善了标准粒子群算法(PSO)的全局收敛性和稳健性,极大地提高了模糊度解算的成功率。通过与LAMBDA法和遗传算法的对比,验证了新方法具有快速、可靠等特点,在模糊度求解方面具有良好的应用价值。 Aimming at the ambiguity float solution of reducing the correlation and its variance arrary,a new ambiguity search algorithm based on improved particle swarm optimization(IPSO) was proposed.For the integer nature of double difference ambiguity,real code were modified to round in coding and made up of particle individual.Through adaptive calculation of inertia weight and particle mutation,IPSO has improved the global convergence and robustness of standard particle swarm optimization to search carrier phase integer ambiguity.The testing example indicates that the new method not only increased the success rate of fixing ambiguity,but also improved the search efficiency,and it spent the same amount of time with LAMBDA,and less time than that genetic algorithm did.The new method is fast and reliable,and will make great application significance to ambiguity resolution of GPS short-baseline.
出处 《大地测量与地球动力学》 CSCD 北大核心 2012年第4期148-151,共4页 Journal of Geodesy and Geodynamics
基金 中央高校基本科研业务费专项(SWJTU10ZT02)
关键词 短基线 整周模糊度 粒子群算法 惯性权重 粒子变异 short baseline integer ambiguity particle swarm optimization inertia weight particle mutation
  • 相关文献

参考文献10

二级参考文献35

  • 1杨宁,张静,田蔚风.遗传算法在DGPS动态整周模糊度解算中的应用[J].系统仿真学报,2005,17(8):2025-2026. 被引量:9
  • 2刘洪波,王秀坤,谭国真.粒子群优化算法的收敛性分析及其混沌改进算法[J].控制与决策,2006,21(6):636-640. 被引量:62
  • 3韩江洪,李正荣,魏振春.一种自适应粒子群优化算法及其仿真研究[J].系统仿真学报,2006,18(10):2969-2971. 被引量:122
  • 4Kennedy J, Eberhart R. Particle swarm optimization [C]. IEEE Int Conf on Neural Networks. Piscataway: IEEE Service Center, 1995: 1942-1948. 被引量:1
  • 5Shi Y, Eberhart R. A modified particle swarm optimizer [C]. IEEE World Conf on Computational Intelligence. Piscataway: IEEE Press,1998: 69-73. 被引量:1
  • 6Shi Y, Eberhart R C. Fuzzy adaptive particle swarm optimization [C]. Proc of the IEEE Conf on Evolutionary Computation. Piscataway: IEEE Press, 2001 : 101-106. 被引量:1
  • 7Zhang L P, Yu H J, Hu S X. A new approach to improve particle swarm optimization[C]. Lecture Notes in Computer Science. Chicago: Springer-Verlag, 2003: 134-139. 被引量:1
  • 8Krink T, Vesterstroem J S, Riget J. Particle swarm optimization with spatial particle extension[C]. Proe of the IEEE Conf on Evolutionary Computation. Honolulu: IEEE Inc, 2002: 1474-1479. 被引量:1
  • 9Clerc M. The swarm and queen.. Towards deterministic and adaptive particle swarm optimization [C]. Proc of IEEE Conf on Evolutionary Computation. Washington D C, 1999: 1951-1957. 被引量:1
  • 10Frans van den Bergh. An analysis of particle swarm optimizers[D]. Pretoria: University of Pretoria, 2001. 被引量:1

共引文献158

同被引文献42

引证文献6

二级引证文献115

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部