期刊文献+

一类具有13个参数的7次系统的极限环分支

Bifurcation of Limit Cycles in a Septic System with 13 Parameters
下载PDF
导出
摘要 研究了一类具有幂零奇点的7次多项式微分系统的极限环分支与中心问题.借助于数学软件MATHEMATICA,推导出系统在原点的前14个拟Lyapunov常数,从而得到了系统的原点为中心的充要条件,证明了系统在3阶幂零奇点处可以分支出14个极限环,给出了7次李雅谱诺夫系统在3阶幂零奇点处的环性数的下界. In this paper, the bifurcation of limit cycles and the center conditions of a class of septic polynomial differential systems with nilpotent singular points are investigated. With the help of the mathematical software MATHEMATICA, the first 14 quasi-Lyapunov constants at the origin of the system are deduced. As a result, necessary and sufficient conditions for the origin of the system to be a center are obtained. The result that there exist 14 limit cycles created from the three-order nilpotent singular point is also proved. Moreover, a lower bound of cyclicity of three-order nilpotent singular point for septic Lyapunov systems is given. s
出处 《数学年刊(A辑)》 CSCD 北大核心 2012年第4期415-424,共10页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.11071222) 山东省自然科学基金(No.Y2008E22)资助的项目
关键词 幂零奇点 中心-焦点问题 极限环分支 积分因子 拟Lyapunov常数 Nilpotent singular point, Center-focus problem, Bifurcation of limit cycles, Integrating factor, Quasi-Lyapunov constant
  • 相关文献

参考文献6

  • 1Amelkin V V, Lukashevich N A, Sadovskii A N. Nonlinear oscillations in the second order systems [M]. Minsk: BGU Publ., 1982 (in Russian). 被引量:1
  • 2Andreev A F, Sadovskii A P, Tsikalyuk V A. The center-focus problem for a system with homogeneous nonlinearities in the case of zero eigenvalues of the linear part [J]. Differential Equations, 2003, 39:155-164. 被引量:1
  • 3Alvarez M J, Gasull A. Momodromy and stability for nilpotent singular points [J]. Internat J Bifur Chaos, 2005, 15:1253-1265. 被引量:1
  • 4Alvarez M J, Gasull A. Generating limit cycles from a nilpotent singular points via normal forms [J]. J Math Anal Appl, 2006, 318:271-287. 被引量:1
  • 5Liu Y, Li J. Bifurcation of limit cycles and center problem for a class of cubic nilpotent system [J]. Internat J Bifur Chaos, 2010, 20:2579-2584. 被引量:1
  • 6刘一戎,李继彬.平面向量场的若干经典问题[M].北京:科学出版社,2010. 被引量:11

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部