期刊文献+

一类三次幂零奇点的中心焦点判定与极限环分支 被引量:1

Criterion of Center-focus and Limit Cycle Bifurcation for a Class of Three-order Nilpotent Singular Points
下载PDF
导出
摘要 研究了一类原点为三次幂零奇点的三次微分系统.对一类三次系统给出了计算原点拟Lyapunov常数的递推公式,并在计算机上用Mathematica推导出该系统原点的前6个拟Lyapunov常数,进而推导出原点成为中心和最高阶细焦点的条件,并在此基础上得到了对系统作适当的微小扰动时,在原点充分小的邻域内恰有6个包围原点的极限环的结论. A class of cubic differential system is studied in this paper,in which origin is nilpotent singular point.A recursive formula is derived to compute quasi-Lyapunov constant.Using the recursive formula and computer system-mathematica,the first six quasi-Lyapunov constants of the system are given.The conditions for origin to be a center and the highest degree fine focus are derived.Six limit cycles in which origin is surrounded in the neighborhood of origin are obtained when the system is perturbed finely.
出处 《湖北民族学院学报(自然科学版)》 CAS 2009年第3期293-297,共5页 Journal of Hubei Minzu University(Natural Science Edition)
基金 国家自然科学基金项目(10771196)
关键词 三次系统 幂零奇点 拟Lyapunov常数 中心焦点 原点 极限环分支 cubic system nilpotent singular point quasi-Lyapunov constant center-focus origin limit cycle bifurcation
  • 相关文献

参考文献12

  • 1Liu Y R,Li J B, Huang W T. Singular Point Values, Center Problem and Bifurcations of Limit Cycles of Two Dimensional Differential Autonomous Systems[ M]. Beijing:Science Press,2008. 被引量:1
  • 2Liu Y R, Li J B. Theory of values of singular point in complex autonomous differential systems [ J ]. Sci in China, 1989,33 (1) : 10 -23. 被引量:1
  • 3Liu Y R. Theory of center - focus in a class of high order singular points and infinity[ J ]. Sci in China,2001,31 ( 1 ) :37 - 48. 被引量:1
  • 4Amelikin B B,Lukashivich H A,Sadovski AP. Nonlinear Oscillations in Second Systems[ M]. BGY Lenin:B I Press,1982(in Russian). 被引量:1
  • 5Takens F. Singularities of voctor fields[J].Inst Hautes Etudes Sci Publ Math,1974,43:47 -100. 被引量:1
  • 6Stroxyna E,Zoladek H. The analytic normal for the nilpotent singularity[ J]. J Differential Equations,2002,179:479 -537. 被引量:1
  • 7Mousau R. Symetric et fonne nonnale des centres et foyers degeneres[J].Ergodic Theory Dynam,1982,2:241 -251. 被引量:1
  • 8Alvarez M J, Gasull A. Monodrama and stability for nilpotent critical points[ J]. IJBC. 2005,15 (4) :1 253 - 1 265. 被引量:1
  • 9Alvarez M J, Gasull A. Ceneratiing limits cycles from a nilpotent critical point via normal forms[J]. J Math Anal Appl,2006,318:271 -287. 被引量:1
  • 10Liu Y R, Li J B. On the Study o/Three- Onier Nilpotent Critical Points :Integral Factor Method[D].上海:上海大学.2009. 被引量:1

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部