期刊文献+

基于贝叶斯学习的集成流量分类方法 被引量:4

Integrated Traffic Classification Method Based on Bayes Learning
下载PDF
导出
摘要 NB方法条件独立性假设和BAN方法小训练集难以建模。为此,提出一种基于贝叶斯学习的集成流量分类方法。构造单独的NB和BAN分类器,在此基础上利用验证集得到各分类器的权重,通过加权平均组合各分类器的输出,实现网络流量分类。以Moore数据集为实验数据,并与NB方法和BAN方法相比较,结果表明,该方法具有更高的分类准确率和稳定性。 It is difficult to model with the conditional independence assumptions of Naive Bayes(NB) method and the small training set of Bayes Network Augmented Naive Bayes(BAN) approach. In order to solve this problem, a new classification method is proposed in this paper. This is a combined traffic classification based on instance-based learning. It constructs a separate NB and BAN classifiers and obtains each classifier weight according to the validation set. It obtains the classification of network traffic through weighted average combination of classifier output. Using Moore data set as the experimental data, results show that the ensemble learning method rather than NB method and BAN method has higher classification accuracy and stability.
出处 《计算机工程》 CAS CSCD 2012年第16期164-166,共3页 Computer Engineering
关键词 流量分类 朴素贝叶斯 贝叶斯网络增广朴素贝叶斯 实例选择 加权 traffic classification Naive Bayes(NB) Bayes Network Augmented Naive Bayes(BAN) instance selection weighing
  • 相关文献

参考文献8

二级参考文献45

  • 1刘琼,徐鹏,杨海涛,彭芸.Peer-to-Peer文件共享系统的测量研究[J].软件学报,2006,17(10):2131-2140. 被引量:36
  • 2Madhukar A, Williamson C. A longitudinal study of P2P traffic classification [C]//Proc of the 14th IEEE Int Syrup on Modeling, Analysis, and Simulation. Washington, DC IEEE Computer Society, 2006:179-188 被引量:1
  • 3Moore A W, Papagiannaki K. Toward the accurate identification of network applications [G]//Dovrolis C. LNCS 3431: Proc of the PAM 2005. Heidelberg: Springer, 2005:41-54 被引量:1
  • 4Karagiannis T, Papagiannaki K, Faloutsos M. BLINC: Multilevel traffic classification in the dark [C]//Proc of ACM SIGCOMM. New York: ACM, 2005.. 229-240 被引量:1
  • 5Roughan M, Sen S, Spatscheck O, et al. Class of service mapping for QoS: A statistical signature-hased approach to IP traffic classification [C]//Proc of ACM SIGCOMM Internet Measurement Conf 2004. New York: ACM, 2004: 135-148 被引量:1
  • 6Zuev D. Moore A W. Traffic classification using a statistical approach [G]//Dovrolis C. LNCS 3431: Proc of the PAM. Heidelberg, Germany: Springer, 2005:321-324 被引量:1
  • 7Moore A W, Zuev D. Internet traffic classification using Bayesian analysis techniques [C] //Proc of the 2005 ACM SIGMETRICS Int Conf on Measurement and Modeling of Computer Systems. New York: ACM, 2005: 50-60 被引量:1
  • 8Tan P N, Steinbach M, Kumar V. Introduction to Data Mining [M]. Boston: Addison Wesley, 2006 被引量:1
  • 9Moore A W, Zuev D, Crogan M. Discriminators for use in flow-based classification, RR-05-13 [R]. London: Queen Mary University of London, 2005 被引量:1
  • 10Witten I H, Frank E. Data Mining: Practical Machine Learning Tools and Techniques [M]. 2nd ed. Amsterdam: Elsevier Inc. , 2005 被引量:1

共引文献79

同被引文献28

引证文献4

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部