摘要
朴素贝叶斯分类器是一种基于独立假设的贝叶斯定理的简单概率分类器,依靠精确的自然概率模型,在有监督学习的样本集中能获取得非常好的分类效果。本文以朴素贝叶斯分类器为基础,提出一种最优保存简单遗传算法为搜索方法,随机抽样分类测试作为适应性函数来设计实现实例选择算法。实验表明,该抽样方法在不降低朴素贝叶斯分类器精度的前提下明显降低计算代价,对部分数据集还可有效地提高分类器的分类精度。
出处
《数字技术与应用》
2013年第1期107-107,共1页
Digital Technology & Application