期刊文献+

基于GA-PSO的低轨星座传感器资源优化调度方法

Sensor Scheduling Method for LEO Constellation Based on GA-PSO
下载PDF
导出
摘要 针对低轨星座目标跟踪传感器资源调度,基于函数优化和组合优化理论,建立了传感器资源优化调度模型,并设计了基于遗传算法-粒子群优化(GA-PSO)的优化调度算法。仿真结果表明,与现有的构造优化调度算法相比,该算法的性能更优,但运算量有所增加。 To deal with the problem of sensor resources scheduling in the low earth orbit (LEO) constellation, a sensor resources scheduling model was established based on combinatorial-optimizing and functional-optimizing in this paper. A novel sensor scheduling algorithm based on genetic algorithm-particle swarm optimization (GA-PSO) was proposed. The simulation results showed that the performance of this method was better than the existing constructive optimizing method although the calculation was more complex.
出处 《上海航天》 2012年第4期22-26,共5页 Aerospace Shanghai
关键词 传感器调度 优化 多目标跟踪 低轨星座 Sensor scheduling Optimization Multi-target tracking Low earth orbit constellation
  • 相关文献

参考文献12

  • 1王博,周一宇,鲁建华,安玮.基于实值粒子群优化的STSS系统传感器管理算法研究[J].系统仿真学报,2009,21(22):7287-7292. 被引量:8
  • 2XIONG N, SVENSSON P. Multi-sensor manage- ment for information fusion: issues and approaches [J]. Information Fusion, 2002, 3(2): 163-186. 被引量:1
  • 3MAHLER R. Multisensor-multitarget sensor man- agement: a unified bayesian approach[C]// Signal Processing, Sensor Fusion, and Target Recognition XII, Proceedings of SPIE5096. Orlando: Is. n.-1, 2003 .. 222-233. 被引量:1
  • 4RATNAWEERA A, HALGAMUGE S K, WAT- SON H C. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3).. 240-255. 被引量:1
  • 5MAHESWARARAJAH S, HALGAMUGE S. Sen-sor scheduling for target tracking using particle swarm optimization[R]. IEEE, 2006 0-7803-9392- 9/06. 被引量:1
  • 6FENG M Y, YI X Q, LI G H, etal. Sensor sched- uling for target tracking in a wireless sensor network using modified particle swarm optimization[J]. Pro- ceedings of ISCSCT, 2008(2) : 156-159. 被引量:1
  • 7王博,刘海军,安玮,周一宇.基于粒子群优化的传感器预分配方法[J].信号处理,2010,26(4):486-491. 被引量:7
  • 8王铁兵,吴京,安玮,罗少华.低轨星座传感器资源预分配管理方法[J].中国电子科学研究院学报,2011,6(5):467-472. 被引量:3
  • 9王凌.智能优化算法及其应用[M].北京:清华出版社,2011. 被引量:2
  • 10HOLLAND J H. Adaptation in natural and artificial systems: an introductory analysis with application to bi ology, comrof, and artificial intelligence[M]. Ann Ar bor, MI.- The University of Michigan Press, 1975. 被引量:1

二级参考文献34

  • 1杨秀珍,何友,鞠传文.目标检测中的传感器管理方法研究[J].系统仿真学报,2004,16(12):2805-2808. 被引量:3
  • 2汤晓君,刘君华.多传感器技术的现状与展望[J].仪器仪表学报,2005,26(12):1309-1313. 被引量:21
  • 3N Xiong, P Svensson. Multi-sensor Management for Information Fusion: Issues and Approaches [J]. Information Fusion (S 1566-2535), 2002, 3(2): 163-186. 被引量:1
  • 4Kalyan Veeramaehaneni, Lisa Ann Osadciw. Dynamic Sensor Management Using Multi Objective Particle Swarm Optimizer [C]// Multisensor, Multi-source Information Fusion: Architectures, Algorithms, and Applications 2004, Proc. of SPIE. USA: SPIE, 2004, Vol. 5434: 205-216. 被引量:1
  • 5Suhinthan Maheswararajah, Saman Halgamuge. Sensor Scheduling for Target Tracking Using Particle Swarm Optimization [C]//IEEE 63^rd Conf. on Vehicular Technology, 2006. USA: IEEE, 2006: 573-577. 被引量:1
  • 6谢恺.天基红外低轨星座对目标的定位与跟踪[D].长沙:国防科技大学博士学位论文,2006. 被引量:2
  • 7Xiu J J, He Y, Wang G H, Xiu J H, Tang X M. Constellation of multisensors in bearing-only location system [J]. IEE Proceedings on Radar Sonar Navigation (S1350-2395), 2005, 152(3): 215-218. 被引量:1
  • 8Y Shi, R Eberhart. Parameter Selection in Particle Swarm Optimization [C]// Proc. of the 7^th Int. Conf. on Evolutionary Program, 1998. USA: Springer-Verlag, 1998: 591-600. 被引量:1
  • 9Asanga Ratnaweera, Saman K Halgamuge, Harry C Watson. Self-Organizing Hierarchical Particle Swarm Optimizer with Time-Varying Acceleration Coefficients [J]. IEEE Transactions on Evolutionary Computation (S 1089-778X), 2004, 8(3): 240-255. 被引量:1
  • 10J Kennedy. The Particle Swarm: Social Adaptation of Knowledge [C]// IEEE Int. Conf. on Evolutionary Computation, 1997. USA: IEEE, 2007: 303-308. 被引量:1

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部