期刊文献+

目标检测中的传感器管理方法研究 被引量:3

Study on Methods of Sensor Management Used in Target Detection
下载PDF
导出
摘要 基于假设检验的方法,研究了目标检测与定位中的传感器管理方法,给出了一种最大后验概率法,讨论了另外两种基于贝叶斯推理的最大正确检测概率法和最小代价函数法。通过仿真改进了最大正确检测概率法,对三种不同方法的检测正确率和平均采样次数进行了比较,分析了各种方法的适用场合。 Based on hypothesis testing, methods of sensor management used in target detection and localization are studied. The detector used in this problem can operate in 揻ocused mode?and 揵road search mode? The former mode offers higher detection and localization accuracy but less coverage area than the latter. It is supposed that a signal source is to be detected and localized with a sequence of tests, each may use different mode. The goal of sensor management is to build an object function for selecting proper mode in the sequence of tests in order to improve the detection performance. In this contribution, A method of maximum a posteriori probability is presented, and methods of maximum correct detecting probability and minimum cost function based on Bayesian Reasoning are discussed. The performance of the three methods are analyzed and compared. The method of maximum correct detecting probability is modified through the simulating process.
出处 《系统仿真学报》 CAS CSCD 2004年第12期2805-2808,共4页 Journal of System Simulation
关键词 多传感器管理 目标检测 假设检验 贝叶斯推理 代价函数 multisensor management target detection hypothesis testing Bayesian reasoning cost function
  • 相关文献

参考文献7

  • 1James Manyika, Hugh Durrant. Data Fusion and Sensor Management [M]. Ellis Horwood Limited, 1994. 被引量:1
  • 2Samuel Blackman, Robert Popoli. Design and Analysis of Modern Tracking Systems [M]. Artech House, 1999. 被引量:1
  • 3He You, Guan Jian, et al. Automatic Radar Detection and Constant False Alarm Rate Processing Methods [M]. Tsinghua Publishing House, 1999. 被引量:1
  • 4He You, Guan Jian, et al. Automatic Radar Detection and Constant False Alarm Rate Processing Methods [M]. Tsinghua Publishing House, 1999. 被引量:1
  • 5David A. Castanon. Optimal Search Strategies in Dynamic Hypothesis Testing [J]. Trans. on System, Man and Cybernetics, 1995, 25(7): 1130-1138. 被引量:1
  • 6Kastella Keith. Joint multitarget probabilities for detection and tracking [A]. SPIE Proceedings [C], 1997, 3086: 122-128. 被引量:1
  • 7Kastella Keith, S. Musick. The search for optimal sensor management [A]. SPIE Proceedings [C], 1996, 2759: 318-329. 被引量:1

同被引文献24

  • 1牟达,王建立,陈涛.红外搜索跟踪系统作用距离的分析[J].仪器仪表学报,2006,27(z1):93-95. 被引量:21
  • 2王睿,梁彦,潘泉,程咏梅.无线传感器网络信息感知中的自组织算法[J].自动化学报,2006,32(5):829-833. 被引量:16
  • 3白学福,梁永辉,江文杰.红外搜索跟踪系统的关健技术和发展前景[J].国防科技,2007,28(1):34-36. 被引量:12
  • 4李志刚,屈玉贵,蔺智挺,刘桂英,赵保华.基于无线传感器网络的战场目标跟踪[J].传感器与微系统,2007,26(7):118-120. 被引量:11
  • 5Liu Juan, Reich James, Zhao Feng. Collaborative in-network processing for target tracking [ J ]. IEEE Signal Processing, 2003, 23(4) :378-391. 被引量:1
  • 6Zhao Feng, Shin Jaewon, Reich James. Information-driven dynamic sensor collaboration for tracking applications[ J ]. IEEE Signal Processing,2002,19 (2) :61-72. 被引量:1
  • 7Pattern S, Poduri S, Krishnamachari B. Energy quality tradeoffs for target tracking in wreless sensor networks [ C ]//2nd International Workshop on Information Processing in SensorNetworks, PaloAlto, CA, USA : Springer,2003. 被引量:1
  • 8N Xiong, P Svensson. Multi-sensor Management for Information Fusion: Issues and Approaches [J]. Information Fusion (S 1566-2535), 2002, 3(2): 163-186. 被引量:1
  • 9Kalyan Veeramaehaneni, Lisa Ann Osadciw. Dynamic Sensor Management Using Multi Objective Particle Swarm Optimizer [C]// Multisensor, Multi-source Information Fusion: Architectures, Algorithms, and Applications 2004, Proc. of SPIE. USA: SPIE, 2004, Vol. 5434: 205-216. 被引量:1
  • 10Suhinthan Maheswararajah, Saman Halgamuge. Sensor Scheduling for Target Tracking Using Particle Swarm Optimization [C]//IEEE 63^rd Conf. on Vehicular Technology, 2006. USA: IEEE, 2006: 573-577. 被引量:1

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部