期刊文献+

衰减记忆无迹卡尔曼粒子滤波算法研究 被引量:4

Research on Memory Attenuation UKF Particle Filter Algorithm
下载PDF
导出
摘要 无迹卡尔曼粒子滤波算法作为典型的粒子滤波改进算法,有效提高了滤波精度.但旧的数据影响过大,导致滤波发散,借鉴衰减记忆无迹卡尔曼滤波算法的思想,通过引进衰减因子实现对当前测量数据利用的加强,减小历史数据对滤波结果的影响,提出了一种基于衰减记忆无迹卡尔曼滤波的粒子滤波算法.仿真实验表明,算法能够提供优于传统无迹卡尔曼滤波算法的跟踪精度. Unscented Particle Filter as the typical improvement Particle Filter Algorithm effectively rises to the filter accuracy. But the old data once influences greatly lead to the filter's exhalement, this passage learn from Memory Attenuation UKF a thought of calculate way and pass to usher in a attenuation factor realization to current measurement data make use of strengthen, and let up a history data to filter result of influence, proposed a kind of particle filter algorithm based on Memory Attenuation UKF. The simulation experiment results show that the proposed algorithm can provide a better tack accuracy than tradition Unscented Particle Filter algorithm.
机构地区 西安通信学院 [
出处 《微电子学与计算机》 CSCD 北大核心 2012年第8期50-52,共3页 Microelectronics & Computer
关键词 粒子滤波算法 无迹卡尔曼粒子滤波算法 衰减记忆 PF MAUKF memory attenuation
  • 相关文献

参考文献8

二级参考文献26

  • 1夏克寒,许化龙,张朴睿.粒子滤波的关键技术及应用[J].电光与控制,2005,12(6):1-4. 被引量:34
  • 2赵梅,张三同,朱刚.辅助粒子滤波算法及仿真举例[J].北京交通大学学报,2006,30(2):24-28. 被引量:14
  • 3李良群,姬红兵,罗军辉.迭代扩展卡尔曼粒子滤波器[J].西安电子科技大学学报,2007,34(2):233-238. 被引量:60
  • 4GORDON N J, SALMOND D J, SMITH A F M. Novel approach to nonlinear-non-Gaussian Bayesian state estimation[ J ]. IEE-Proceedings-F, 1993,140 (2) : 107-113. 被引量:1
  • 5De FREITAS J F G. Bayesian methods for LONDON neural networks [ D]. Cambridge University, 1999. 被引量:1
  • 6DOUCET A, GODSILLI S J, ABDRUEU C. On sequential Monte Carlo sampling methods for Bayesian filtering [ J ]. Statistics and Computing ( S0960-3174), 2000,10 (3) :197-208. 被引量:1
  • 7Van der MERMER, DOUCET A, de FtLEITAS N, et al. The unscented particle filter [ EB/OL ]. [ 2000-05-12 ] London : Cambridge University. 被引量:1
  • 8PITt M K, SHEPHARD N. Filtering via simulation: auxiliary particle filtering [ J ]. American Statistical Association, 1999, 94(446) :590-599. 被引量:1
  • 9MUSSO C, OUDJANEN, L EGLAND F. Improving regularized particle filters [ M ]//DOUCET A, de FREITAS J F G, GORDON N J. Sequential Monte Carlo Methods in Practicel New York: Springer-Verlag, 2001: 247-272. 被引量:1
  • 10Rao S K. Algorithm tor detection of maneuvering targets in bearings-only passive target tarcking [ J ]. IEEE Proceedings of Radar Sonar Navigation, 1999,146(3) : 141 - 146. 被引量:1

共引文献315

同被引文献30

  • 1杨元喜.动态Kalman滤波模型误差的影响[J].测绘科学,2006,31(1):17-18. 被引量:43
  • 2赵琳.非线性系统滤波理论[M].北京:国防工业出版社,2012. 被引量:25
  • 3Kalman R E. A new approach to linear filtering and prediction problems [J]. Journal of Basic Engineering, 1960, 82(1): 35-45. 被引量:1
  • 4Yang C, Duraiswami R, Davis L. Efficient mean-shift tracking via a new similarity measure [C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. 1: 176-183. 被引量:1
  • 5Druckmtiller M. Phase correlation method for the alignment of total solar eclipse images [J]. The Astrophysical Journal, 2009, 706(2): 1605-1608. 被引量:1
  • 6JulierSJ,UhlamnnJK.A New ExtensionoftheKal-manFiltertoNonlinearSystems[C]//TheProceedingsof Aeraosense:The 11th International Symposium onAerosace/DefenseSensing,SimulationandControls.Or-lando,FL,1997:54-65. 被引量:1
  • 7CRISAN D,OBANUBIO.Particlefilterswithrandomresamplingtimes[J].StochasticProcessesandtheirAp-plications,2012,122(4):1332-1368. 被引量:1
  • 8秦永元.卡尔曼滤波与组合导航原理[c]//张洪铖.卡尔曼滤波的推广.西安:西北工业大学出版社,1989:36—76. 被引量:1
  • 9赵琳.非线性系统滤波理论[c]//王小旭.非线性系统最优滤波及次优滤波.北京:国防工业出版社,2012:76-134. 被引量:1
  • 10Aggarwal P, Syed Z, EbSheimy N. Hybrid extended particle filter ( HEPF ) for integrated civilian navigation system[J].Position, Location and Naviga- tion, 2008 (29) : 2043 -- 2050. 被引量:1

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部