期刊文献+

基于局部坐标二次微分的自适应全变分去噪复原 被引量:3

Adaptive Total Variation Image Denoising and Restoration Based on the Quadratic Differential in the Local Coordinate System
下载PDF
导出
摘要 针对传统TV去噪复原算法以梯度模值作为图像的边缘检测算子,无法清晰地识别边缘和灰度渐变区及去除平坦区内的孤立噪声的问题,提出了一种基于局部坐标二次微分的边缘检测算子对传统模型进行改进。改进后的模型能根据各像素点的新检测算子信息,自适应选取复原模型中决定扩散强弱的参数,并且利用图像局部信息对正则化项和保真项进行加权。同时在数值实现上,采用一种基于梯度矢量的方向变化的方法来实现散度离散化,以更加有效地保留图像的局部细节信息。数值试验表明,该算法在克服灰度渐变区内的阶梯效应和保留图像的细节边缘方面明显优于传统算法。 Aiming at the algorithm of traditional total variation image denoising and restoration based on the image gradient as its edge indicator, which cannot effectively distinguish between edges and ramps and remove the isolated noise in flat. regions, a new edge indicator based on the quadratic differential in the local coordinate system is proposed to improve the traditional model. The improved model can adaptively select the most appropriate denoising scheme based on the edge indicator information of each pixel, and its regularization term and fidelity term can be weighted by the image fine information. And in the aspect of the numerical implementation, a new method based on the variation of the image gradient direction is adopted to discrete the divergence term to better preserve fine details effectively. Numerical experiments demonstrate that the new algorithm is superior to the traditional ones in the aspect of avoiding the staircase effect in ramp regions and preserving fine details.
出处 《光电工程》 CAS CSCD 北大核心 2012年第8期10-17,共8页 Opto-Electronic Engineering
基金 教育部博士点基金(20090191110026)
关键词 全变分 阶梯效应 局部坐标 自适应去噪复原 total variation staircase effect local coordinate adaptive denoising and restoration
  • 相关文献

参考文献15

  • 1Rosenfeld A, Kak A C. Digital picture processing [M]. New York: Academic Press, 1982. 被引量:1
  • 2Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence(SOl62-8828), 1990, 12(7): 629-639. 被引量:1
  • 3Rudin L 1, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms [J]. Physica D: Nonlinear Phenomena(S0167-2789), 1992, 60(1/4): 259-268. 被引量:1
  • 4Song B. Topics in variational PDE image segmentation [D]. University of California Los Angeles, 2003. 被引量:1
  • 5张红英,彭启琮.全变分自适应图像去噪模型[J].光电工程,2006,33(3):50-53. 被引量:45
  • 6Blomgren P, Chan T F, Mulet P, et al. Total variation image restoration: numerical methods and extensions [C]// Proceedings International Conference on Image Processing, Oct 26-29, 1997, 3: 384-387. 被引量:1
  • 7Chan T, Marquina A, Mulet P. High-order total variation-based image restoration [J]. SIAM Journal on Scientific Computing(S1064-8275), 2000, 22: 503. 被引量:1
  • 8Chen Q, Montesinos P, Sun Q S, et al. Adaptive total variation denoising based on difference curvature [J]. Image and Vision Computing(S0262-8856), 2010, 28(3): 298-306. 被引量:1
  • 9Hu J, Wang H. Adaptive total variation based on feature scale [J]. Trans. Eng. Comput. Teehnol(S1000-9000), 2005, V2: 245-248. 被引量:1
  • 10Catte F, Lions P L, Morel J M, et al. Image selective smoothing and edge detection by nonlinear diffusion [J]. SIAM Journal on NumeriealAnalysis(S0036-1429), 1992, 29(1): 182-1931. 被引量:1

二级参考文献5

  • 1Leonid I.RUDIN,Stanley OSHER,Emad FATEMI.Nonlinear total variation based noise removal algorithms[J].Phys.D,1992,60(1-4):259-268. 被引量:1
  • 2Bing SONG.Topics in Variational PDE Image Segmentation,Inpainting and Denoising[D].USA:University of California Los Angeles,2003. 被引量:1
  • 3Marino BELLONI,Bernd KAWOHL.A direct uniqueness proof for equations involving the p-Laplace operator[J].Manuscripta math,2002,109(2):229-231. 被引量:1
  • 4Bernd KAWOHL.From Mumford-Shah to Perona-Malik in image processing[J].Math.Methods Appl.Sci,2004,27(15):1803-1814. 被引量:1
  • 5Bernd KAWOHL,Jana STARA.Observations on a nonlinear evolution equation[EB/OL].http://www.karlin.mff.cuni.cz/-rokyta/ preprint/2004-pap/2004-139.ps,2004-12-20. 被引量:1

共引文献44

同被引文献11

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部