摘要
为了探讨单元数、迭代次数以及需求精度等关键因素对于网格优化效果的影响,选用1种较优的四面体单元质量衡量准则建立了网格优化算法的目标函数,在此基础上提出了1种四面体网格质量提高算法,并通过某离心泵蜗壳数值算例对比分析了这些关键因素在网格质量提高和优化耗时方面的异同.结果表明:优化后网格质量在0~0.1区间内的劣质单元数明显减少,同时基于光顺的网格优化算法能够较好地提高网格整体质量,此外,随着单元数的增加,优化后的网格平均质量和优化时间会有所增加,但优化后的最差单元质量出现了波动,存在着1个极值;迭代次数的变化对于优化后的网格质量和优化时间影响较小;需求精度的提高会使得网格质量和优化时间同时增加.
To investigate the influences of element number, iteration number and required accuracy on optimization, a tetrahedron quality metric was chosen to establish objective function to propose a tetrahe-dral mesh optimization algorithm. Based on volute calculating example of a centrifugal pump, the influ-ences of the key factors on the optimized mesh quality and time consuming were compared. The results show that the poor-quality elements in the range from 0 to O. 1 are significantly reduced. The whole mesh quality can be improved obviously by the mesh optimization-based smoothing algorithm. The average mesh quality and the time cost are increased with the increase of element number, but the worst-quality element is fluctuant with one extremum. Iteration number has slight effect on the mesh quality and time cost. The mesh quality is improved with increased time cost by the increasing of required accuracy.
出处
《江苏大学学报(自然科学版)》
EI
CAS
北大核心
2012年第5期533-537,共5页
Journal of Jiangsu University:Natural Science Edition
基金
国家自然科学基金资助项目(51179075
51109095)
江苏高校优势学科建设工程项目
关键词
离心泵
目标函数
优化算法
基于光顺的网格优化
单元质量衡量准则
centrifugal pump
objective function
optimization algorithm
optimization-based smoothing
element quality metric