期刊文献+

基于光顺的网格优化算法及其关键因素分析 被引量:2

Mesh optimization-based smoothing algorithm and its key influence factors analysis
下载PDF
导出
摘要 为了探讨单元数、迭代次数以及需求精度等关键因素对于网格优化效果的影响,选用1种较优的四面体单元质量衡量准则建立了网格优化算法的目标函数,在此基础上提出了1种四面体网格质量提高算法,并通过某离心泵蜗壳数值算例对比分析了这些关键因素在网格质量提高和优化耗时方面的异同.结果表明:优化后网格质量在0~0.1区间内的劣质单元数明显减少,同时基于光顺的网格优化算法能够较好地提高网格整体质量,此外,随着单元数的增加,优化后的网格平均质量和优化时间会有所增加,但优化后的最差单元质量出现了波动,存在着1个极值;迭代次数的变化对于优化后的网格质量和优化时间影响较小;需求精度的提高会使得网格质量和优化时间同时增加. To investigate the influences of element number, iteration number and required accuracy on optimization, a tetrahedron quality metric was chosen to establish objective function to propose a tetrahe-dral mesh optimization algorithm. Based on volute calculating example of a centrifugal pump, the influ-ences of the key factors on the optimized mesh quality and time consuming were compared. The results show that the poor-quality elements in the range from 0 to O. 1 are significantly reduced. The whole mesh quality can be improved obviously by the mesh optimization-based smoothing algorithm. The average mesh quality and the time cost are increased with the increase of element number, but the worst-quality element is fluctuant with one extremum. Iteration number has slight effect on the mesh quality and time cost. The mesh quality is improved with increased time cost by the increasing of required accuracy.
出处 《江苏大学学报(自然科学版)》 EI CAS 北大核心 2012年第5期533-537,共5页 Journal of Jiangsu University:Natural Science Edition
基金 国家自然科学基金资助项目(51179075 51109095) 江苏高校优势学科建设工程项目
关键词 离心泵 目标函数 优化算法 基于光顺的网格优化 单元质量衡量准则 centrifugal pump objective function optimization algorithm optimization-based smoothing element quality metric
  • 相关文献

参考文献14

  • 1Montenegro R, Casc6n J M, Escobar J M, et al. An au- tomatic strategy for adaptive tetrahedral mesh generation [ J ]. Applied Numerical Mathematics, 2009, 59 ( 9 ) : 2203 - 2217. 被引量:1
  • 2黄晓东,杜群贵.二维有限元网格的局部加密方法[J].华南理工大学学报(自然科学版),2004,32(12):56-60. 被引量:7
  • 3刘厚林,路明臻,巫进,谈明高,董亮,任芸.离心泵内部四面体网格的优化算法[J].排灌机械工程学报,2010,28(6):465-469. 被引量:1
  • 4Ahn H T, Branets L, Carey G F. Moving boundary si- mulations with dynamic mesh smoothing [ J ]. Interna- tional Journal for Numerical Methods in Fluids, 2010, 64(8) :887 -907. 被引量:1
  • 5Mahmood R, Jimack P K. Locally optimal unstructured finite element meshes in 3 dimensions [ J ]. Computers and Structures, 2004, 82:2105 - 2116. 被引量:1
  • 6Blacker T D, Stephenson M B. Paving: a new approach to automated quadrilateral mesh generation[ J ]. Interna- tional Journal for Numerical Methods in Engineering, 1991, 32(4): 811 -847. 被引量:1
  • 7Vartziotis D, Wipper J, Sehwald B. The geometric ele- ment transformation method for tetrahedra] mesh smoo- thing[ J ]. Computer Methods in Applied Mechanics and Engineering, 2009, 199 : 169 - 182. 被引量:1
  • 8刘厚林,路明臻,董亮,任芸,舒敏骅.基于错误函数的四面体网格优化方法[J].江苏大学学报(自然科学版),2011,32(1):60-64. 被引量:2
  • 9Escobar J M, Montenegro R, Montero G, et al. Smoo- thing and local refinement techniques for improving tetra- hedral mesh quality [ J ]. Computers and Structures, 2005, 83:2423 -2430. 被引量:1
  • 10Parthasarathy V, Kodiyalam S. A constrained optimiza- tion approach to finite element mesh smoothing[J]. Fi- nite Elements in Analysis and Design, 1991, 9(4) : 309 - 320. 被引量:1

二级参考文献31

共引文献18

同被引文献23

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部