期刊文献+

用于CO_2激光传输的10.6μm波段空心布拉格光纤 被引量:1

Hollow-Core Bragg Fiber with a Transmission Band of 10.6 μm for Carbon Dioxide Laser
原文传递
导出
摘要 空心布拉格光纤是具有一维光子晶体(1DPC)包层和空心芯区的新型光子带隙光纤。针对它在CO2激光传输中的应用,设计和制备了传输波段中心波长在10.6μm的空心布拉格光纤样品。利用傅里叶变换红外光谱仪(FTIR)可以观察到光纤样品在10.6μm具有明显的透射峰。使用CO2激光,通过截断法测量得到光纤样品在10.6μm的传输损耗为2.35dB/m。测量了不同弯曲曲率下光纤样品的弯曲损耗,结果表明弯曲损耗系数随曲率的增大而线性增长。在接近光纤输出端处,弯曲半径为10cm的光纤90°弯曲引入的附加损耗约为2dB。实验结果论证了光纤样品的CO2激光低损耗传输特性,展现了空心布拉格光纤在提升CO2激光操作灵活性上的应用潜力。 Hollow-core Bragg fiber is a kind of photonic bandgap fiber which has a cladding of one dimensional photonic crystal (1DPC) and an air core. Aiming at its application on C02 laser transmission, a hollow-core Bragg fiber sample with a transmission band of 10.6μm is designed and fabricated. Its transmission spectrum is measured by Fourier transform infrared spectrometer (FTIR), showing an obvious low loss transmission peak at 10.6 μm. Measured by cutback method using a CO2 laser, the transmission loss at 10.6 μm of the fiber sample is 2.35 dB/m. The additional loss induced by fiber bending is also measured under different fiber curvatures, showing that it rises with increasing curvature. Experiments show that a fiber bending of 90° with a bending radius of 10 cm near the fiber output end leads to an additional loss about 2 dB. The experimental results demonstrate the low loss transmission of CO2 laser by the hollow-core Bragg fiber sample, showing its great potential on improving the flexibility of CO2 lasers.
出处 《中国激光》 EI CAS CSCD 北大核心 2012年第8期103-107,共5页 Chinese Journal of Lasers
基金 国家973计划(2010CB327606) 北京市自然科学基金(4102028)资助课题
关键词 光纤光学 空心布拉格光纤 CO2激光 一维光子晶体 fiber optics hollow-core Bragg fiber CO2 laser one dimensional photonic crystal
  • 相关文献

参考文献12

  • 1N. Tabata, S. Yagi, M. Hishii et al.. Present and future of lasers for fine cutting of metal plate[J]. Journal of Materials Processing Technology, 1996, 62(4): 309-314. 被引量:1
  • 2R. W. Ryan, T. Wolf, R. F. Spetzler et al.. Application of a flexible CO2 laser fiber for neurosurgery- laser-tissue interactions [J]. J. Neurosurg, 2010, 112(2): 434-443. 被引量:1
  • 3R. W. Ryan, T. Waif, R. F. Spetzler et al.. Aura of technology and the cutting edge: a history of lasers in neurosurgery[J]. Neurosurg Focus, 2009, 27(3) - E6. 被引量:1
  • 4B. Temelkuran, S. D. Hart, G. Benoit et al.. Wavelength- scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission[J]. Nature, 2002, 420(6916) : 650-653. 被引量:1
  • 5S. G. Johnson, M. Ibanescu, M. Skorobogatiyet al.. Low loss asymptotically single-mode propagation in large-core Omni-guide fibers[J]. Opt. Express, 2001, 9(13): 748-779. 被引量:1
  • 6Changzhi Li, Wei Zhang, Yidong Huang et al.. Numerical study on Bragg fibers for infrared applications[J]. Inter. J. Infra. & Milli. Waves, 2005, 26(6): 893-904. 被引量:1
  • 7J. A. Harrington. A review of IR transmitting, hollow waveguides[J]. Fiber Integr. Opt., 2000, 19(3): 211-227. 被引量:1
  • 8石立超,张巍,邢文鑫,李志广,王文涛,黄翊东,彭江得.外径波动下空心布拉格光纤的模式传输特性[J].中国激光,2010,37(10):2559-2564. 被引量:4
  • 9PIR-fiber delivery set for COz laser[EB/OL]. (2012)[2012-04- 12]. http://www, artphotonics, de/products/special-fibers and fiber-cables/pir-fiber-cable-delivery-set-for-COz -laser/. 被引量:1
  • 10A. F. Abouraddy, M. Bayindir, G. Benoit et al.. Towards multimaterial multifunctional fibres that see, hear, sense and communicate[J]. Nature Materials, 2007, 6:336-347. 被引量:1

二级参考文献19

  • 1R. F. Cregan, B. J. Mangan, J. C. Knight et al.. Single-mode photonic band gap guidance of light in air[J].Science, 1999, 285(5433): 1537-1539. 被引量:1
  • 2B. Temelkuran, S. D. Hart, G. Benoit et al.. Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission[J].Nature, 2002, 420(6916): 650-653. 被引量:1
  • 3Y. L. Hoo, S. Liu, H. L. Ho et al.. Fast response microstructured optical fiber methane sensor with multiple side-openings[J].IEEE Photon. Technol. Lett., 2010, 22(5): 296-298. 被引量:1
  • 4C. Charlton, B. Temelkuran, G. Dellemann et al.. Midinfrared sensors meet nanotechnology: trace gas sensing with quantum cascade lasers inside photonic band-gap hollow waveguides[J].Appl. Phys. Lett., 2005, 86(19): 194192. 被引量:1
  • 5P. Yeh, A. Yariv, E. Marom. Theory of Bragg fiber[J].J. Opt. Soc. Am., 1978, 68(9): 1196-1201. 被引量:1
  • 6Y. Fink, J. N. Winn, S. Fan et al.. A dielectric omnidirectional reflector[J].Science, 1998, 282(5394): 1679-1682. 被引量:1
  • 7M. Ibanescu, S. G. Johnson, M. Soljacic et al.. Analysis of mode structure in hollow dielectric waveguide fibers[J].Phys. Rev. E, 2003, 67(4): 046608. 被引量:1
  • 8OmniGuide Inc. CO2 Laser Surgery Scalpel, Flexible CO2 Laser Scalpel-OmniGuide[EB/OL].(2000-06-11)[2010-04-03].http://www.omni-guide.com/index.htm. 被引量:1
  • 9A. F. Abouraddy, M. Bayindir, G. Benoit et al.. Towards multimaterial multifunctional fibres that see, hear, sense and communicate[J].Nature Materials, 2007, 6(5): 336-347. 被引量:1
  • 10K. Kuriki, O. Shapira, S. D. Hart et al.. Hollow multilayer photonic bandgap fibers for NIR applications[J].Opt. Express, 2004, 12(8): 1510-1517. 被引量:1

共引文献3

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部