期刊文献+

色散平坦的HIC Bragg光纤传输特性研究

Numerical Study of Transmission Characteristics on Dispersion-Flattened HIC Bragg Fibers
下载PDF
导出
摘要 布拉格(Bragg)光纤是一种由空气孔芯和高低折射率介质层交替周期性排列的包层两部分构成的一维光子晶体光纤。文章以碲酸盐玻璃为基质,设计了一种高折射率实芯Bragg光纤,并采用传输矩阵法和Bloch理论数值研究了其传输特性,获得了实芯Bragg光纤的结构参数与其模场分布、色散特性等传输特性之间的关系。仿真实验结果表明,当Bragg光纤的填充率d/Λ为0.15、半径R为5μm、折射率差Δn为0.02、周期Λ为1.2μm和包层为3个周期时,Bragg光纤在1 064nm零色散波长附近具有最平坦的色散特性,同时还具有非常低的传输损耗,损耗值为0.775dB/m。 The tellurite High Index Core (HIC) Bragg fibers have been regarded as a new type of photonic crystal fiber, which confine the modes in the core through total reflection and Photonic Bandgap (PBG). The transmission characteristics of HIC Bragg fiber have been analyzed using the transfer matrix and Bloch theory methods. We design the HIC Bragg fiber with flat chromatic dispersion and low loss of 0.775 dB/m on the 1 064 nm. It is numerically shown that flat chromatic dispersion of HIC Bragg fiber can be generated at the conditions of the filling ratio of d/Λ=0.15, the core radius of R=5μm, refractiveindex contrast of Δn=0.02, the radial multilayer period of Λ=1.2m and the cladding layers of N=6. The zero dispersion point is also located at 1 064 nm.
作者 覃瑶 郑加金 雷雯婕 韦玮 QIN Yao;ZHENG Jia-jin;LEI Wen-jie;WEI Wei(College of Electronic and Optical Engineering & College of Microelectronics,Nanjing University of Posts & Telecommunications,Nanjing 210023,China;State Key Laboratory of Transient Optics and Photonics Xi'an Institute of Optics and Precision Mechanics of CAS,Xi'an 710119,China)
出处 《光通信研究》 北大核心 2018年第4期22-25,65,共5页 Study on Optical Communications
基金 南京邮电大学国家自然科学孵化基金资助项目(NY215143) 中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室开放基金资助项目(SKLST201606)
关键词 高折射率实芯 BRAGG光纤 传输矩阵 传输特性 色散平坦 HIC Bragg fiber transfer matrix transmission characteristics flat chromatic dispersion
  • 相关文献

参考文献7

二级参考文献57

  • 1张振远,凌根华.硫系玻璃红外光纤[J].玻璃纤维,2005(1):15-18. 被引量:4
  • 2金崇君,秦柏,杨森,秦汝虎.三角形复式晶格的光子带结构研究[J].光学学报,1997,17(4):409-413. 被引量:24
  • 3方俊鑫 陆栋.固体物理(下)[M].上海:上海科学技术出版社,1981.. 被引量:1
  • 4R. F. Cregan, B. J. Mangan, J. C. Knight et al.. Single-mode photonic band gap guidance of light in air[J].Science, 1999, 285(5433): 1537-1539. 被引量:1
  • 5B. Temelkuran, S. D. Hart, G. Benoit et al.. Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission[J].Nature, 2002, 420(6916): 650-653. 被引量:1
  • 6Y. L. Hoo, S. Liu, H. L. Ho et al.. Fast response microstructured optical fiber methane sensor with multiple side-openings[J].IEEE Photon. Technol. Lett., 2010, 22(5): 296-298. 被引量:1
  • 7C. Charlton, B. Temelkuran, G. Dellemann et al.. Midinfrared sensors meet nanotechnology: trace gas sensing with quantum cascade lasers inside photonic band-gap hollow waveguides[J].Appl. Phys. Lett., 2005, 86(19): 194192. 被引量:1
  • 8P. Yeh, A. Yariv, E. Marom. Theory of Bragg fiber[J].J. Opt. Soc. Am., 1978, 68(9): 1196-1201. 被引量:1
  • 9Y. Fink, J. N. Winn, S. Fan et al.. A dielectric omnidirectional reflector[J].Science, 1998, 282(5394): 1679-1682. 被引量:1
  • 10M. Ibanescu, S. G. Johnson, M. Soljacic et al.. Analysis of mode structure in hollow dielectric waveguide fibers[J].Phys. Rev. E, 2003, 67(4): 046608. 被引量:1

共引文献88

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部