期刊文献+

极化诱导实现AlGaN薄膜材料中的超高电子浓度(10^(20)cm^(-3))掺杂 被引量:1

Polarization induced ultra-high electron concentration up to 10^(20)cm^(-3)in graded AlGaN
原文传递
导出
摘要 材料的载流子浓度和迁移率是影响器件性能的关键因素,变温Hall测试结果证明杂质掺杂A1GaN中的载流子浓度和迁移率随温度降低而减小.然而极化诱导掺杂的载流子浓度和迁移率不受温度变化的影响.以准绝缘的GaN体材料作为衬底,在组分分层渐变的AlGaN中实现的极化诱导掺杂浓度仅仅在10^(17)cm^(-3)数量级甚至更低.本研究采用载流子浓度为10^(16)cm^(-3)量级的非有意n型掺杂GaN模板为衬底,用极化诱导掺杂技术在分子束外延生长的AlGaN薄膜材料中实现了高达10^(20)cm^(-3)量级的超高电子浓度.准绝缘的体材GaN半导体作衬底时,只有表面自由电子作为极化掺杂源,而非有意掺杂的GaN模板衬底除了提供表面自由电子外,还能为极化电场提供更多的自由电子"源",从而实现超高载流子浓度的n型掺杂. Carrier concentration and mobility of materials are key factors affecting device performance. Hall tests at different temperatures demonstrate that the carrier concentration and mobility in impurity-doped AIGaN decrease with temperature decreasing. However, carrier concentration and mobility obtained by polarization-induced doping are independent of temperature. Using quasi-insulating GaN as substrate, the electron concentration obtained in the linearly graded AlGaN film through impurity-doping is only 10-17 cm-3 or less. In this study, using unintentional impurity doped (n-type, 10-16 cm-3) GaN template, graded A1GaN film is grown by molecular beam epitaxial, in which polarization induced ultra-high electron concentration is up to 10^20 cm-3 in graded AlGaN film without using any dopant. Using quasi-insulating GaN as substrate, only the surface of the free electrons serves as polarization dopant, while unintentionally doped GaN template is used as a substrate, in addition to free electrons on surface/interface, it is also reasonable to surmise more negative charges attracted by polarization electric field to be the source of polarization doping, in the unintentional doped GaN template, thereby achieving an ultra-high carrier concentration via polarization induced n-type doping.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2012年第16期171-176,共6页 Acta Physica Sinica
基金 国家自然科学基金(批准号:61101029)资助的课题~~
关键词 超高电子浓度 极化诱导掺杂 线性渐变 AlGaN膜 ultra-high electron concentration, polarization doping, graded AlGaN films
  • 相关文献

参考文献13

  • 1Chang J Y, Liou B T, Lin H W, Shih Y H, Chang S H, Kuo Y K 2011 Opt. Lett. 36 3500. 被引量:1
  • 2Gonschorek M, Carlin J F, Feltin E, Py M A, Grandjean N 2011 Appl. Phys. 109 063720. 被引量:1
  • 3Holzworth M R, Rudawski N G, Pearton S J, Jones K S, Lu L, Kang T S, Ren F, Johnson J W 2011 Appl. Phys. Lett. 98 122103. 被引量:1
  • 4Altahtamouni T M, Sedhain A, Lin J Y, Jiang H X 2008 Appl. Phys. Lett. 92 092105. 被引量:1
  • 5Zhang L, Ding K, Liu N X, Wei T B, Ji X L, Ma P, Yan J C, Wang J X, Zeng Y ELi J M 2011 Appl. Phys. Lett. 98 101 110. 被引量:1
  • 6Zhang J F, Wang C, Zhang J C, Hao Y 2006 Chin. Phys. 15 1060. 被引量:1
  • 7Simon J, Protasenko V, Lian C, Xing H, Jena D 2010 Science 32760. 被引量:1
  • 8Zhang L, Ding K, Yan J C, Wang J X, Zeng Y E Wei T B, Li Y Y, Sun B J, Duan R ELi J M 2011 Appl. Phys. Lett. 97 062103. 被引量:1
  • 9Zhong E Li X H, Qiu K Yin Z J, Ji C J, Cao X C, Hart Q E Chen J R, Wang Y Q 2007 Chin. Phys. 16 2786. 被引量:1
  • 10Jena D, Heikman S, Speck J S, Gossard A, Mishra U K 2003 Phys. Rev. B 67 153306. 被引量:1

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部