期刊文献+

基于遗传算法的新书推荐系统研究 被引量:2

Research on the New Book Recommendation System Based on Genetic Algorithm
下载PDF
导出
摘要 新书推荐是数字图书馆推广个性化服务的重要内容。为设计开发高效、准确的推荐系统,研究人员采用多种智能算法实现图书推荐。基于遗传算法的新书推荐方法(GANBook)利用遗传算法搜索效率高、自适应性强等优点对新书书目进行自动搜索,从而实现个性化图书推荐。仿真实验表明GANBook算法能够快速、准确地在数量庞大的书目中找出适合特定读者的最佳图书推荐组合,从而实现快速、个性化的新书推荐服务。 New book recommendation is an important content for promoting the individualized service of digital library. In order to design an effective book recommendation system, researchers apply a variety of intelligent algorithms to realize the system. Develops a new recommend method called Genetic Algorithm based new book recommendation (GANBook). In the GANBook algorithm, by using the high efficiency and strong adaptability of genetic algorithm to realize the personalized books recommend. Computer simulation shows that the proposed approach can find the best book recommend combination for the specific readers in a huge number of books quickly and accurately, so as to realize the fast, personalized book recommendation service.
作者 朱婵
出处 《现代计算机》 2012年第14期14-17,55,共5页 Modern Computer
关键词 数字图书馆 个性化推荐 遗传算法 读者兴趣度 Digital Library Personalized Recommendation Genetic Algorithm Reader's Interest
  • 相关文献

参考文献9

二级参考文献64

  • 1周军锋,汤显,郭景峰.一种优化的协同过滤推荐算法[J].计算机研究与发展,2004,41(10):1842-1847. 被引量:102
  • 2曾庆辉,邱玉辉.一种基于协作过滤的电子图书推荐系统[J].计算机科学,2005,32(6):147-150. 被引量:14
  • 3李敏,李春平.频繁模式挖掘算法分析和比较[J].计算机应用,2005,25(B12):166-171. 被引量:11
  • 4马文峰,杜小勇.数字资源整合的发展趋势[J].图书情报工作,2007,51(7):66-70. 被引量:40
  • 5SARWAR B,KARYPIS G,KONSTAN J,et al.Item-based collaborative filtering recommendation algorithms[C] //Proc of the 10th International World Wide Web Conference.New York:ACM Press,2001:285-295. 被引量:1
  • 6HERLOCKER J,KONSTAN J,TERVEEN L,et al.Evaluating collaborative filtering recommender systems[J].ACM Trans on Information Systems,2004,22(1):5-53. 被引量:1
  • 7ESTER M,KRIEFEL H P,SANDER J,et al.A density-based algorithm for discovering clusters in large spatial databases with noise[C] //SIMOUDIS E,HAN J W,FAYYAD U M.Proc of the 2nd International Conference on Knowledge Discovery and Data Mining.Portland:AAAI Press,1996:226-231. 被引量:1
  • 8ERTO(O)Z L,STEINBACH M,KUMAR V.Finding clusters of diffe-rent sizes,shapes,and densities in noisy,high dimensional data[C] //Proc of the 2nd SIAM International Conference on Data Mining.2003. 被引量:1
  • 9SARWAR B M,KARYPIS G,KONSTAN J A,et al.Application of dimensionality reduction in recommender system:a case study[C] //Proc of ACM WebKDD 2000 Workshop.2000. 被引量:1
  • 10R Agrawal,T Imielinski and A.Swami.Mining association rules between sets of items in large databases[J].Proceeding,of the ACM-SIGMOD 1993 Int'l Conference on Management of Data,Washington D.C.,1993.207-216. 被引量:1

共引文献471

同被引文献21

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部