期刊文献+

基于分数阶导数的磁流变弹性体参数模型 被引量:6

THE PARAMETER MODEL OF MAGNETORHEOLOGICAL ELASTOMERS BASED ON FRACTIONAL DERIVATIVE
原文传递
导出
摘要 磁流变弹性体宏观力学行为是基体粘弹性和磁致模量变化的综合反映,建立能够准确模拟其力学特性的参数模型是设计磁流变弹性体装置所必需的。因此,该文利用建立粘弹性材料参数模型的VFD(粘弹性分数阶导数)元件及弹簧元件与表述磁致效应的非线性弹簧元件,建立了磁流变弹性体的磁致粘弹性参数模型,分析了频率、磁场强度和分数阶数对该模型动态性能的影响,结果表明该模型能够反映磁流变弹性体磁致效应对其力学性能的影响,且该模型仅需少量参数就能在较宽频率范围内更好地模拟真实的试验性能。 The macro-mechanical behavior of magnetorheological elastomers is the comprehensive reflection of both the matrix viscoelastic and the change of magnetic modulus. It is necessary to establish the parameter model for designing magnetorheological elastomers devices, which can accurately simulate the mechanical properties. In the paper, the magnetic viscoelastic parameter model of magnetorheological elastomers is established using the VFD (Viscoelastic Fractional Derivative) element, spring element and the nonlinear spring element related to the magnetic effect. Then, the effects of frequency, magnetic field strength and the influence of fractional order to the dynamic properties of the model are analyzed. The results show that the model can reflect the magnetic effect of the magnetorheological elastomers on the mechanical properties, and only a few parameters will be able to simulate the true experimental properties successfully within a wide frequency range.
出处 《工程力学》 EI CSCD 北大核心 2012年第8期45-49,79,共6页 Engineering Mechanics
基金 国家自然科学基金项目(61004064) 国家863高科技计划项目(2009AA03Z106) 江苏省普通高校研究生科研创新计划资助项目(CXZZ-0160)
关键词 磁流变弹性体 参数模型 磁致效应 VFD元件 磁致模量 magnetorheological elastomers parameter model magnetic-induced effect VFD element magnetic-induced modulus
  • 相关文献

参考文献11

  • 1Jolly M R, Carlson J D. The magnetoviscoelastic response of elastomer composites consisting of ferrous particles embedded in a polymer matrix [J]. Journal of Intelligent Material Systems and Structures, 1996, 7: 613--622. 被引量:1
  • 2Davis L C. Model of magnetorheological elastomers [J]. Journal of Applied Physics, 1999, 85(6): 3348--3351. 被引量:1
  • 3Shen Y, Golnaraghi M F, Heppler G R. Experimental research and modeling of magnetorheological elastomers [J]. Journal of Intelligent Material Systems and Structures, 2004, 15: 27--35. 被引量:1
  • 4李卓,徐秉业.粘弹性分数阶导数模型的等效粘性阻尼系统[J].清华大学学报(自然科学版),2000,40(11):27-29. 被引量:10
  • 5Meral F C, Royston T J, Magin R. Fractional calculus in viscoelasticity: An experimental study [J]. Commun Nonlinear Sci Numer Simulat, 2010(15): 939--945. 被引量:1
  • 6Rand R H, Sah S M, Suehorsky M K. Fractional Mathieu equation [J]. Commun Nonlinear Sci Numer Simulat, (2009), doi: 10.1016/j.cnsns. 2009. 12. 009. 被引量:1
  • 7Adolfsson K, Enelund M, Larsson S. Adaptive diseretization of fractional order viscoelasticity using sparse time history [J]. Computer methods in applied mechanics and Engineering, 2004(193): 4567--4590. 被引量:1
  • 8孙海忠,张卫.分数算子描述的粘弹性材料的本构关系研究[J].材料科学与工程学报,2006,24(6):926-930. 被引量:16
  • 9沃德IM.固体高聚物的力学性能[M].北京:科学出版社,1988. 被引量:3
  • 10张先舟..磁流变弹性体的研制及其机理研究[D].中国科学技术大学,2005:

二级参考文献14

  • 1党辉,朱应顺,龚兴龙,张培强.基于分布链修正的磁流变弹性体的物理模型[J].Chinese Journal of Chemical Physics,2005,18(6):971-975. 被引量:15
  • 2汪建晓,孟光.磁流变弹性体研究进展[J].功能材料,2006,37(5):706-709. 被引量:52
  • 3Jolly M R, et al.[J]. Smart Mater Strut,1996,3(5):607- 614. 被引量:1
  • 4Shen Y, Golnaraghi M F, Heppler G R.[J].Journal of Intelligent Material Systems and Structure, 2004,15:27. 被引量:1
  • 5Gemant A.A method of Analyzing Experimental Obtained from Elastoviscous Bodies[J].Physics,1936,7:311 ~ 317. 被引量:1
  • 6Bagley R L,Torvik P J.On the Fractional Calculus Model of Viscoelastic Behavior[J].J of Rheology,1986,30(1):133 ~ 155. 被引量:1
  • 7Shestopal V O,Goss P C J.The Estimation of Column Creep Buckling Durability from the Initial Stages of Creep[J].Acta Mechanica,1984,52:269 ~ 275. 被引量:1
  • 8SHI MIIU Nobuyuki,ZHANG Wei.Fractional Culculus approach to dynamic problem of Viscoelastic material[J].JSME,1999,1 (42):827 ~ 830. 被引量:1
  • 9张亚军.用MTS810试验机进行橡胶制品恒应力压缩性能试验[J].北京科技大学学报,2004,26:39-42. 被引量:1
  • 10I.M.沃德.漆宗能,等.固体高聚物的力学性能[M].北京:科学出版社,1988,129~148. 被引量:3

共引文献32

同被引文献73

引证文献6

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部