期刊文献+

粒子群Memetic算法求解多峰函数优化 被引量:2

Multi-peak function optimization based on particle swarm optimization Memetic algorithm
下载PDF
导出
摘要 针对目前多峰函数优化问题较难找到全部局部最优解的情况,提出了一种粒子群Memetic算法。算法结合了粒子群优化的全局搜索能力和爬山法的局部搜索能力,增强了算法搜索最优解的能力。实验结果表明,该算法求解精度较高,且收敛速度较快。 For the difficulty of finding all the extreme solutions for multi-peak function optimization, a particle swarm optimization Memetic algorithm is proposed. It combines the advantages of particle swarm optimization in global search and Memetic algorithm in local search. So, it enhances the searing ability of the algorithm. The experi- ments results show that the algorithm has better effectiveness and rapid convergence.
作者 刘合安 王雷
出处 《计算机工程与应用》 CSCD 2012年第22期10-13,33,共5页 Computer Engineering and Applications
基金 湖南省科技厅自然科技基金项目(No.2010CK3030 No.2011CK3073)
关键词 粒子群优化 多峰函数 MEMETIC算法 particle swarm optimization multi-peak function Memetic algorithm
  • 相关文献

参考文献17

二级参考文献133

共引文献282

同被引文献19

  • 1杨俊安,庄镇泉.量子遗传算法研究现状[J].计算机科学,2003,30(11):13-15. 被引量:54
  • 2Shor P W. Algorithms for quantum computation: dis- crete logarithms and factoring [C]//Proceedings of 35th Symposium: Foundation of Computer Science. Santa Fe, 1994: 20-22. 被引量:1
  • 3Han Kuk Hyun, Kim Jong Hwan. On the analysis of the quantum inspired evolutionary algorithm with a single individual[C]//IEEE Congress on Evolutionary Computation Sheraton Vancouver Wall Centre Hotel. Vancouver, BC, Canada, 2006:9172-9179. 被引量:1
  • 4Li B,Zhuang Z. Genetic algorithm based on the quan- tum probability representation[C]//Proceedings of In- telligent Data Engineering and Automated Learning. Manchester, 2002 : 500-505. 被引量:1
  • 5徐雪松,王四春.基于免疫量子遗传算法的多峰函数优化[J].计算机应用研究,2012(5):1674-1677. 被引量:1
  • 6l.i Minqiang, I.in Dan, Kou Jisong. A Hybrid Niching PSO Enhanced with Recombination-replacement Crowding Strategy for Multimodal Function Optimization[J]. Applied Soft Computing, 2012, 12(3): 975-987. 被引量:1
  • 7Jovani L F, I.uiz F L R, Paulo L C. Comparison of Methods for Multivariate Moment Inversion Introducing the Independent Component Analysis[J]. Computers & Chemical Engineering, 2014, 60: 41-56. 被引量:1
  • 8Subhrajit R, Minhazul S K, Swagatam D, et al. Multimodal Optimization by Artificial Weed Colonies Enhanced with Localized Group Search Optimizers[j]. Applied Soft Computing, 2013, 13(1): 27-46. 被引量:1
  • 9Antanas J. On Strong Homogeneity of Two Global Optimization Algorithms Based on Statistical Models of Multimodal Objective Functions[J]. Applied Mathematics & Computation, 2012, 218(16) : 8131-8136. 被引量:1
  • 10Shima K. Using a Self-adaptive Neighborhood Scheme with Crowding Replacement Memory in Genetic Algorithm for Multimodal Optimization[J]. Swarm and Evolutionary Computation, 2013, 12: 1-17. 被引量:1

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部