期刊文献+

多峰函数优化的免疫混沌网络算法 被引量:9

Immune Chaotic Network Algorithm for Multimodal Function Optimization
下载PDF
导出
摘要 针对多峰函数优化问题,借鉴混沌遍历特性和免疫网络理论,提出一种免疫混沌网络算法。算法利用混沌运动的自身规律在不同的峰值区域内搜索最佳抗体,增强了算法的局部搜索能力;采用网络抑制策略,保持了种群的多样性;通过网络补充机制自适应地调节抗体群的规模,提高了算法对不同类型多峰函数的适应能力。仿真结果表明该算法能有效地改善种群的多样性,较好地保持全局搜索和局部搜索的动态平衡,具有更强的多峰函数优化能力。 Referred to the ergodicity of chaos and immune network theory,an immune chaotic network algorithm for multimodal function optimization was proposed. The rule of chaotic motion was used to search the best antibodies in different peak regions in order to enhance the capacity of local search. The strategy of network suppression was adopted to maintain the diversity of population. Under the action of network supplement mechanism,the scale of antibody population was adjusted to adapt different types of multimodal function. Simulation results show that the algorithm can not only improve population diversity effectively,but also keep the dynamic balance between global search and local search well. Therefore,it has excellent optimization performance to multimodal function.
出处 《系统仿真学报》 CAS CSCD 北大核心 2010年第4期915-920,共6页 Journal of System Simulation
基金 中国博士后科学基金(20080430170)
关键词 多峰优化 混沌搜索 免疫网络 局部优化 multimodal optimization chaotic search immune network local optimization
  • 相关文献

参考文献10

  • 1Goldberg D E, Richardson J. Genetic algorithms with sharing for multimodal function optimization [C]//Proc 2nd International Conf on Genetic Algorithms. N J, USA: Lawrence Erlbaum, 1987: 41-49. Mahfoud S W. Crowding and preselection revisited [C]// Parallel Problem. 被引量:1
  • 2Mahfoud S W. Crowding and preselection revisited [C]// Parallel Problem Solving from Nature. Amsterdam, The Netherlands: Elsevier, 1992: 27-36. 被引量:1
  • 3Li Jian-Ping, Balazs M E, Parks G T. A species conserving genetic algorithm for multimodal function optimization [J]. Evolutionary Computation (S1063-6560), 2002, 10(3): 207-234. 被引量:1
  • 4De Castro L N, Von Zuben F J. Learning and optimization using the clonal selection principle [J]. IEEE Trans on evolutionary computation (S 1089-778X), 2002, 6(3): 239-251. 被引量:1
  • 5Seo J H, Im C H, Heo C G. Multimodal function optimization based on particle swarm optimization [J]. IEEE Trans on Magnetics (S0018-9464), 2006, 42(4): 1095-1098. 被引量:1
  • 6De Castro L N, Timmis J. Art artificial immune network for multimodal function optimization [C]//Proc of IEEE Congress on Evolutionary Computation, Hawaii, USA, 2002. USA: IEEE, 2002, 1: 699-704. 被引量:1
  • 7王向军,向东,蒋涛,林春生,龚沈光,方兴.一种双种群进化规划算法[J].计算机学报,2006,29(5):835-840. 被引量:24
  • 8谭竹梅,余晓峰,郭观七.排挤小生态遗传算法的改进方法[J].控制理论与应用,2004,21(4):651-654. 被引量:6
  • 9焦李成等著..免疫优化计算学习与识别[M].北京:科学出版社,2006:464.
  • 10Fisehetti M, Martello S. A hybrid algorithm for finding the kth smallest ofn element in O(n) time [J]. Annals of Operations Research (S0254-5330), 1988, 13(1): 401-419. 被引量:1

二级参考文献15

  • 1GOLDBERG D E,RICHARDSON J.Genetic algorithms with sharing for multimodal function optimization[C]∥Proc of the 2nd Int Conf on Genetic Algorithms.Hillsdale,NJ:Lawrence Erlbaum,1987:41-49. 被引量:1
  • 2JELASITY M,DOMBI T.GAS,a concept on modeling species in genetic algorithms[J].Artificial Intelligence,1998,99(1):1-19. 被引量:1
  • 3MAHFOUD S W.Crowding and preselection revisited[C]∥Parallel Problem Solving from Nature-2.Amsterdam:Elsevier,1992:27-36. 被引量:1
  • 4MENGSHOEL O J,GOLDBERG D E.Probabilistic crowding:deterministic crowding with probabilistic replacement[R].Urbana-Champaign:University of Illinois,IlliGAL Report No.99004,1999. 被引量:1
  • 5SARENI B,KLHENBüHL L.Fitness sharing and niching methods revisited[J].IEEE Trans on Evolutionary Computation,1998,2(3):97-106. 被引量:1
  • 6GAN J,WARWICK K.Dynamic niche clustering:a fuzzy variable radius niching technique for multimodal optimization in Gas[C]∥Proc of 2001 IEEE Int Conf on Evolutionary Computation.Piscataway,NJ:IEEE Press,2001:215-222. 被引量:1
  • 7MAHFOUD S W .Niching methods for genetic algorithms[D].Urbana-Champatign :University of Illinosis,1995 被引量:1
  • 8Yao X,Liu Y..A new evolutionary system for evolving artificial neural networks.IEEE Transactions on Neural Networks,1997,8(3):694~713 被引量:1
  • 9Sebald A.V,Schlenzig J..Minimax design of neural net controllers for highly uncertain plants.IEEE Transactions on Neural Networks,1994,5(1):73~82 被引量:1
  • 10Bornholdt S,Graundenz D..General asymmetric neural networks and structure design by genetic algorithms.IEEE Transactions on Neural Networks,1992,5(5):327~334 被引量:1

共引文献27

同被引文献121

引证文献9

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部