期刊文献+

Estimation of convergence of a high-speed railway tunnel in weak rocks using an adaptive neuro-fuzzy inference system(ANFIS) approach 被引量:1

Estimation of convergence of a high-speed railway tunnel in weak rocks using an adaptive neuro-fuzzy inference system(ANFIS) approach
下载PDF
导出
摘要 Estimation of tunnel diameter convergence is a very important issue for tunneling construction,especially when the new Austrian tunneling method(NATM) is adopted.For this purpose,a systematic convergence measurement is usually implemented to adjust the design during the whole construction,and consequently deadly hazards can be prevented.In this study,a new fuzzy model capable of predicting the diameter convergences of a high-speed railway tunnel was developed on the basis of adaptive neuro-fuzzy inference system(ANFIS) approach.The proposed model used more than 1 000 datasets collected from two different tunnels,i.e.Daguan tunnel No.2 and Yaojia tunnel No.1,which are part of a tunnel located in Hunan Province,China.Six Takagi-Sugeno fuzzy inference systems were constructed by using subtractive clustering method.The data obtained from Daguan tunnel No.2 were used for model training,while the data from Yaojia tunnel No.1 were employed to evaluate the performance of the model.The input parameters include surrounding rock masses(SRM) rating index,ground engineering conditions(GEC) rating index,tunnel overburden(H),rock density(?),distance between monitoring station and working face(D),and elapsed time(T).The model’s performance was assessed by the variance account for(VAF),root mean square error(RMSE),mean absolute percentage error(MAPE) as well as the coefficient of determination(R2) between measured and predicted data as recommended by many researchers.The results showed excellent prediction accuracy and it was suggested that the proposed model can be used to estimate the tunnel convergence and convergence velocity. Estimation of tunnel diameter convergence is a very important issue for tunneling construction,especially when the new Austrian tunneling method(NATM) is adopted.For this purpose,a systematic convergence measurement is usually implemented to adjust the design during the whole construction,and consequently deadly hazards can be prevented.In this study,a new fuzzy model capable of predicting the diameter convergences of a high-speed railway tunnel was developed on the basis of adaptive neuro-fuzzy inference system(ANFIS) approach.The proposed model used more than 1 000 datasets collected from two different tunnels,i.e.Daguan tunnel No.2 and Yaojia tunnel No.1,which are part of a tunnel located in Hunan Province,China.Six Takagi-Sugeno fuzzy inference systems were constructed by using subtractive clustering method.The data obtained from Daguan tunnel No.2 were used for model training,while the data from Yaojia tunnel No.1 were employed to evaluate the performance of the model.The input parameters include surrounding rock masses(SRM) rating index,ground engineering conditions(GEC) rating index,tunnel overburden(H),rock density(?),distance between monitoring station and working face(D),and elapsed time(T).The model’s performance was assessed by the variance account for(VAF),root mean square error(RMSE),mean absolute percentage error(MAPE) as well as the coefficient of determination(R2) between measured and predicted data as recommended by many researchers.The results showed excellent prediction accuracy and it was suggested that the proposed model can be used to estimate the tunnel convergence and convergence velocity.
作者 A.C.Adoko Li Wu
机构地区 Faculty of Engineering
出处 《Journal of Rock Mechanics and Geotechnical Engineering》 2012年第1期11-18,共8页 岩石力学与岩土工程学报(英文版)
基金 support of China University of Geosciences (Wuhan)
关键词 tunnel convergence prediction new Austrian tunneling method (NATM) adaptive neurc -fuzzy inference system(ANF1S) subtractive clustering tunnel convergence prediction new Austrian tunneling method (NATM) adaptive neurc,-fuzzy inference system(ANF1S) subtractive clustering
  • 相关文献

参考文献1

二级参考文献3

共引文献21

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部