期刊文献+

ANFIS在水电站地下厂房围岩变形预测中应用 被引量:6

Prediction of surrounding deformations of underground powerhouse using ANFIS
下载PDF
导出
摘要 针对目前应用人工神经网络(ANN)方法预测地下洞室围岩变形时间序列的缺陷,提出一种将神经元网络和模糊逻辑有机结合的新型模糊推理系统——ANFIS(adaptive-network-based fuzzy inference systems),该系统采用反向传播算法和最小二乘法的混合算法分别调整前提参数和结论参数,充分地利用了神经网络的学习能力和模糊逻辑的表达能力,实现了回归模型的自适应调整.通过龙滩电站的实例应用可以发现,ANFIS预测系统较传统ANN方法具有简单、快速以及预测精度高等特点. In allusion to the insufficiency of the prediction accuracy of artificial neural network (ANN) algorithm for underground cavern rock surrounding stability, the method of ANFIS (adaptive-network-based fuzzy inference systems) machines is applied to researching into evolution law for a nonlinear deformation time series of rock surrounding. ANFIS is a new fuzzy inference system which combines neural network and fuzzy logic organically. The hybrid algorithm of back propagation algorithm and least square method is adopted to adjust the premise parameter and the consequent parameter respectively, which makes full use of the learning ability of neural network and the expression ability of fuzzy logic to realize the adaptive adjustment of the regression model. Compared with the conventional ANN method, Longtan Hydropower Station can be found simple, the application of ANFIS forecasting system in fast and accurate.
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2009年第4期576-579,共4页 Journal of Dalian University of Technology
基金 岩土力学与工程国家重点实验室资助项目(Z110801)
关键词 围岩变形 预测 ANFIS BP网络 surrounding deformation prediction ANFIS BP network
  • 相关文献

参考文献5

二级参考文献25

  • 1陈有亮.非等距时间序列的GM(1,N)模型及其在地下工程中的应用[J].计算结构力学及其应用,1996,13(4):483-488. 被引量:3
  • 2刘勇 康力山.非数值并行算法(第二册)——遗传算法[M].北京:科学出版社,1997.. 被引量:4
  • 3Burge CJC. A tutorial on support vector machines for pattern recognition[J] .Data Mining and Knowledge Discovery, 1998, (2) :121 - 167. 被引量:1
  • 4Alex J Smola, Bernhard Schoelkopf. A Tutorial on Support Vector Regression[R]. NeuroCOLT2 Technical Report Series, 1998. 被引量:1
  • 5John C Platt. Sequeotial Minimal Optimization:A Fast Algorithm for training Support Vector machines[R].Technical Report,1998 被引量:1
  • 6Burge C J C.A tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery,1998,2:121-167. 被引量:1
  • 7Alex J S,Bernhard S.A tutorial on support vector regression[R].Germany,Berlin:NeuroCOLT2 Technical Report Series NC2- TR-1998030,1998. 被引量:1
  • 8John C P.Sequential minimal optimization:a fast algorithm for training support vector machines[R].Wash.,Redmond:Technical Report MSR-TR-98-14,21,1998. 被引量:1
  • 9Vladimir N Vapnik.The Nature of Statistical Learning Theory[M].Ny:Spring-Verlag,1995. 被引量:1
  • 10Setve R Gunn.Support vector machines for classification and regression[R].[s.l.]:University of Southampton,1998. 被引量:1

共引文献156

同被引文献60

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部